Verify Trigonometric Identities

How to verify Trigonometric Identities?

To proof and verify the identities we will make use of the basic trigonometric identities to make sure that both the sides of the equation is equal to each other.

1. If tan A = (sin θ - cos θ)/(sin θ + cos θ) then prove that, 
                         sin
θ + cos θ  = ± √2 cos A

Solution:

We know that, sec2 A = 1 + tan2 A

⇒ sec2 A = 1 + (sin θ - cos θ)2/(sin θ + cos θ) 2

⇒ sec2 A = [(sin θ + cos θ) 2 + (sin θ - cos θ) 2]/(sin θ + cos θ) 2

⇒ sec2 A = 2(sin2 θ + cos2 θ)/ (sin θ + cos θ) 2



⇒ 1/cos2 A = 2/(sin θ + cos θ) 2

⇒ (sin θ + cos θ) 2 = 2 cos2

Now taking square root on both the sides we get,

sin θ + cos θ =  ± √2 cos A .

                                                  Proved


More examples to get the basic ideas to proof and verify Trigonometric Identities.

2. If x sin3 θ + y cos3 θ = sin θ cos θ and x sin θ – y cos θ = 0, then prove that x2 + y2 = 1, (where, sin θ ≠ 0 and cos θ ≠ 0).

Solution:

x sin θ - y cos θ = 0, (Given)

⇒ x sin θ = y cos θ

⇒ y cos θ = x sin θ

Now dividing both sides by cos θ we get,

y = x ∙ (sin θ/cos θ)

Again, x sin3 θ + y cos3 θ = sin θ cos θ

⇒ x sin3 θ + x ∙ (sin θ /cos θ) ∙ cos3 θ = sin θ cos θ [Since, y = x ∙ (sin θ/cos θ)]

⇒ x sin θ ( sin2 θ + cos2 θ) = sin θ cos θ, [since, cos θ ≠ 0]

⇒ x sin θ (1) = sin θ cos θ,[since, sin2 θ + cos2 θ = 0]

⇒ x sin θ = sin θ cos θ

Now dividing both sides by sin θ we get,

⇒ x = cos θ, [since, sin θ ≠ 0]

Therefore, y = x ∙ (sin θ/cos θ)

⇒ y = cos θ ∙ (sin θ/cos θ), [Putting x = cos θ]

⇒ y = sin θ

Now, x2 + y2

= cos2 θ + sin2 θ

= 1.

Therefore, x2 + y2 = 1.

                                                  Proved


3. If 2y cos α = x sin α and 2x sec α - y csc α = 3, then prove that x2 + 4y2 = 4

Solution:

2y cos α = x sin α, (Given)

\(\frac{cos  α}{x}  =  \frac{sin  α}{2y} = \frac{\sqrt{cos^{2} α  +  sin^{2} α}}{x^{2}  +  4y^{2}} = \frac{1}{x^{2}  +  4y^{2}}
\)

\(Therefore, cos  θ  =  \frac{x}{x^{2}  +  4y^{2}} and  sin  θ = \frac{2y}{x^{2}  +  4y^{2}}\)

Now, 2x sec α - y csc α = 3

⇒ 2x ∙ \(\frac{1}{cos  α}\) - y ∙ \(\frac{1}{sin  α}\) = 3, [Since, sec α = \(\frac{1}{cos  α}\) and csc α = \(\frac{1}{sin  α}] \)

⇒ 2x ∙ \(\frac{\sqrt{x^{2}  +  4y^{2}}}{x}\) - y ∙ \(\frac{\sqrt{x^{2}  +  4y^{2}}}{2y}\) = 3, [putting the values of sin α and cos α]

⇒ \(\frac{3}{2}\sqrt{x^{2}  +  4y^{2}} = 3\)

⇒ \(\sqrt{x^{2}  +  4y^{2}} = 2\)

Now taking square root on both the sides we get,

⇒ x2 + 4y2 = 4.


                                                  Proved

Note: Remember there is no set method that can be applied to verify trigonometric identities. However, a few different techniques needed to follow to start verifying from one side, based on the identity which is to be verified.

 Trigonometric Functions





10th Grade Math

From Verify Trigonometric Identities to HOME PAGE


New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.



Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Rupees and Paise | Paise Coins | Rupee Coins | Rupee Notes

    Dec 04, 23 02:14 PM

    Different types of Indian Coins
    Money consists of rupees and paise; we require money to purchase things. 100 paise make one rupee. List of paise and rupees in the shape of coins and notes:

    Read More

  2. Months of the Year | List of 12 Months of the Year |Jan, Feb, Mar, Apr

    Dec 04, 23 01:50 PM

    Months of the Year
    There are 12 months in a year. The months are January, February, march, April, May, June, July, August, September, October, November and December. The year begins with the January month. December is t…

    Read More

  3. The Story about Seasons | Spring | Summer | Autumn | Winter

    Dec 04, 23 01:49 PM

    The Four Seasons
    Kids let’s enjoy the story about seasons. Here we will discuss about the four seasons and the duration. Some months are too hot and some are too cold. The period of hot months is called the hot

    Read More