# Verify Trigonometric Identities

How to verify Trigonometric Identities?

To proof and verify the identities we will make use of the basic trigonometric identities to make sure that both the sides of the equation is equal to each other.

1. If tan A = (sin θ - cos θ)/(sin θ + cos θ) then prove that,
sin
θ + cos θ  = ± √2 cos A

Solution:

We know that, sec2 A = 1 + tan2 A

⇒ sec2 A = 1 + (sin θ - cos θ)2/(sin θ + cos θ) 2

⇒ sec2 A = [(sin θ + cos θ) 2 + (sin θ - cos θ) 2]/(sin θ + cos θ) 2

⇒ sec2 A = 2(sin2 θ + cos2 θ)/ (sin θ + cos θ) 2

⇒ 1/cos2 A = 2/(sin θ + cos θ) 2

⇒ (sin θ + cos θ) 2 = 2 cos2

Now taking square root on both the sides we get,

sin θ + cos θ =  ± √2 cos A .

Proved

More examples to get the basic ideas to proof and verify Trigonometric Identities.

2. If x sin3 θ + y cos3 θ = sin θ cos θ and x sin θ – y cos θ = 0, then prove that x2 + y2 = 1, (where, sin θ ≠ 0 and cos θ ≠ 0).

Solution:

x sin θ - y cos θ = 0, (Given)

⇒ x sin θ = y cos θ

⇒ y cos θ = x sin θ

Now dividing both sides by cos θ we get,

y = x ∙ (sin θ/cos θ)

Again, x sin3 θ + y cos3 θ = sin θ cos θ

⇒ x sin3 θ + x ∙ (sin θ /cos θ) ∙ cos3 θ = sin θ cos θ [Since, y = x ∙ (sin θ/cos θ)]

⇒ x sin θ ( sin2 θ + cos2 θ) = sin θ cos θ, [since, cos θ ≠ 0]

⇒ x sin θ (1) = sin θ cos θ,[since, sin2 θ + cos2 θ = 0]

⇒ x sin θ = sin θ cos θ

Now dividing both sides by sin θ we get,

⇒ x = cos θ, [since, sin θ ≠ 0]

Therefore, y = x ∙ (sin θ/cos θ)

⇒ y = cos θ ∙ (sin θ/cos θ), [Putting x = cos θ]

⇒ y = sin θ

Now, x2 + y2

= cos2 θ + sin2 θ

= 1.

Therefore, x2 + y2 = 1.

Proved

3. If 2y cos α = x sin α and 2x sec α - y csc α = 3, then prove that x2 + 4y2 = 4

Solution:

2y cos α = x sin α, (Given)

$$\frac{cos α}{x} = \frac{sin α}{2y} = \frac{\sqrt{cos^{2} α + sin^{2} α}}{x^{2} + 4y^{2}} = \frac{1}{x^{2} + 4y^{2}}$$

$$Therefore, cos θ = \frac{x}{x^{2} + 4y^{2}} and sin θ = \frac{2y}{x^{2} + 4y^{2}}$$

Now, 2x sec α - y csc α = 3

⇒ 2x ∙ $$\frac{1}{cos α}$$ - y ∙ $$\frac{1}{sin α}$$ = 3, [Since, sec α = $$\frac{1}{cos α}$$ and csc α = $$\frac{1}{sin α}]$$

⇒ 2x ∙ $$\frac{\sqrt{x^{2} + 4y^{2}}}{x}$$ - y ∙ $$\frac{\sqrt{x^{2} + 4y^{2}}}{2y}$$ = 3, [putting the values of sin α and cos α]

⇒ $$\frac{3}{2}\sqrt{x^{2} + 4y^{2}} = 3$$

⇒ $$\sqrt{x^{2} + 4y^{2}} = 2$$

Now taking square root on both the sides we get,

⇒ x2 + 4y2 = 4.

Proved

Note: Remember there is no set method that can be applied to verify trigonometric identities. However, a few different techniques needed to follow to start verifying from one side, based on the identity which is to be verified.

Trigonometric Functions

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

## Recent Articles

1. ### What is a Triangle? | Types of Triangle | Scalene Triangle | Isosceles

Jun 17, 24 11:22 PM

A simple closed curve or a polygon formed by three line-segments (sides) is called a triangle. The above shown shapes are triangles. The symbol of a triangle is ∆. A triangle is a polygon with three s…

2. ### Interior and Exterior of an Angle | Interior Angle | Exterior Angle

Jun 16, 24 05:20 PM

Interior and exterior of an angle is explained here. The shaded portion between the arms BA and BC of the angle ABC can be extended indefinitely.

3. ### Angles | Magnitude of an Angle | Measure of an angle | Working Rules

Jun 16, 24 04:12 PM

Angles are very important in our daily life so it’s very necessary to understand about angle. Two rays meeting at a common endpoint form an angle. In the adjoining figure, two rays AB and BC are calle

4. ### What is a Polygon? | Simple Closed Curve | Triangle | Quadrilateral

Jun 16, 24 02:34 PM

What is a polygon? A simple closed curve made of three or more line-segments is called a polygon. A polygon has at least three line-segments.