Volume of a Cuboid

Cuboid is a solid box whose every surface is a rectangle of same area or different areas.

cuboid will have a lengthbreadth and height.

Hence we can conclude that volume is 3 dimensional. To measure the volumes we need to know the measure 3 sides.

Since volume involves 3 sides it is measured in cubic units.

Units of Volume

Volume of a cuboid = (length × breadth × height) cubic units.

= (l × b × h) cubic units.

   (Since area = ℓ × b)

Volume of a cuboid = area of one surface × height cubic units

Let us look at the given cuboid.

The length of the cuboid = 5 cm

The breadth of the cuboid = 3 cm

The height of cuboid (thickness) = 2 cm

The number of 1 cm cubes in the given cuboid = 30 cubes = 5 × 3 × 2

We find that volume of the given cuboid with length 5 cm, breadth 3 cm and height 2 cm is 30 cu cm.

Therefore, volume of a cuboid = length × breadth × height


Solved examples on volume of a cuboid:

1. Find the volume of a cuboid of dimensions 14 cm × 12 cm × 8 cm.

Solution:

Volume of cuboid = length × breadth × height.

Here, length = 14 cm, breadth = 12 cm and height = 8 cm.

Volume of cuboid = 14 × 12 × 8 cubic cm.

= 1344 cubic cm.

Therefore, volume of cuboid = 1344 cubic cm.


2. Michael made a shoe box with length 8 cm, breadth 6 cm and height 6 cm. Find the volume of the box.

Solution:

Volume of the shoe box = Length × breadth × height.

                                   = 8 × 6 × 6

                                   = 288 cu cm.


3. A fish tank is 40 cm long, 15 cm broad and 10 cm high. What is its volume in cu cm?

Solution:

The length of the fish tank = 40 cm

The breadth of the fish tank = 15 cm

The height of the fish tank = 10 cm

Therefore, the volume of the fish tank = length × breadth × height.

                                                        = 40 × 15 × 10 cu. cm

                                                        = 6000 cu cm.


4. Find the volume of a cuboid of dimensions 14 cm × 50 mm × 10 cm.

Solution:

Here, length = 14 cm,

[Given, breadth = 50 mm; we need to convert breadth to same unit and then solve. We know, 10 mm = 1 cm. Therefore, 50 mm = 50/10 cm = 5 cm].

Breadth = 5 cm,

Height = 10 cm.

Volume of cuboid = length × breadth × height.

                          = 14 × 5 × 10

                          = 700 cubic cm.

Therefore, volume of cuboid = 700 cubic cm.

Note: In a cuboid, when the length, breadth and height are of different units, convert them to a same unit and then solve.


5. Find the volume of a cuboid of dimensions 17 mm × 0.2 cm × 12 mm in cu. cm.

Solution:

Given, length = 17 mm.

We know, 10 mm = 1 cm.

= 17/10 cm.

= 1.7 cm.

Therefore, length = 1.7 cm.

Similarly, height = 12 mm.

We know, 10 mm = 1 cm.

= 12/10 cm.

= 1.2 cm.

Therefore, height = 1.2 cm.

Volume of cuboid = length × breadth × height.

Length = 1.7 cm, breadth = 0.2 cm and height = 1.2 cm.

           = 1.7 × 0.2 × 1.2 cu. cm.

           = 0.408 cu. cm.

Therefore, volume of cuboid = 0.408 cubic cm.


6. Find the number of cubical boxes of cubical side 3 cm which can be accommodated in carton of dimensions 15 cm × 9 cm × 12 cm.

Solution:

Volume of box = side × side × side.

                      = 3 × 3 × 3

                      = 27 cu. cm.

Volume of carton = length × breadth × height.

                          = 15 × 9 × 12

                          = 1620 cu. cm.

Number of boxes = Volume of carton/Volume of each box.

                          = 1620/27

                          = 60

Therefore, number of cubical boxes = 60.


7. How many bricks each 25 cm long, 10 cm wide and 7.5 cm thick will be required for a wall 20 m long, 2 m high and 0.75 m thick? If bricks sell at $900 per thousand what will it cost to build the wall?

Solution:

Volume of the wall = 20 m × 2 m × 0.75 m

                           = 20 × 100 cm × 2 × 100 cm × 0.75 × 100 cm

Volume of brick = 25 cm × 10 cm × 7.5 cm

Number of bricks = Volume of the wall/Volume of the brick

                         = 20 × 100 × 2 × 100 × 0.75 × 100/25 × 10 × 7.5

                         = 16000

The number of bricks = 16000

The cost of 1 thousand bricks = $ 900

The cost of building the wall = $ 900 × 16 = $ 14400

Note: While calculating the volume of a cuboid all the dimensions should be changed into the same unit. 


Questions and Answers on Cuboid:

1. Find the volume of each of the cuboids.

(i) Length = 5 cm, Breadth = 4 cm and Height = 3 cm

(ii) Length = 15 m, Breadth = 10 m and Height = 2 m

(iii) Length = 0.5 m, Breadth = 3 m and Height = 4 m

(iv) Length = 3.2 cm, Breadth = 2 cm and Height = 8 cm

(v) Length = 5 m, Breadth = 1.5 m and Height = 1.2 m


Answers:

1. (i) 60 cu cm

(ii) 300 cu m

(iii) 6 cu m

(iv) 51.2 cu cm

(v) 9 cu m


2. Find the volume of these tanks.

(i) Length = 16 cm, Breadth = 60 cm and Height = 20 cm

(ii) Length = 6 m, Breadth = 3 m and Height = 5 m

(iii) Length = 2 m, Breadth = 1.5 m and Height = 1.5 m

(iv) Length = 80 cm, Breadth = 20 cm and Height = 40 cm

(v) Length = 1.2 m, Breadth = 1.2 m and Height = 1 m


Answers:

2. (i) 19200 cu cm

(ii) 90 cu m

(iii) 4.5 cu m

(iv) 64,000 cu cm

(v) 1.44 cu m

Volume.

Units of Volume

Cube.

Cuboid.

Practice Test on Volume.

Worksheet on Volume.





5th Grade Geometry

5th Grade Math Problems

From Volume of a Cuboid to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Adding and Subtracting Large Decimals | Examples | Worksheet | Answers

    May 01, 25 03:01 PM

    Here we will learn adding and subtracting large decimals. We have already learnt how to add and subtract smaller decimals. Now we will consider some examples involving larger decimals.

    Read More

  2. Converting Fractions to Decimals | Solved Examples | Free Worksheet

    Apr 28, 25 01:43 AM

    Converting Fractions to Decimals
    In converting fractions to decimals, we know that decimals are fractions with denominators 10, 100, 1000 etc. In order to convert other fractions into decimals, we follow the following steps:

    Read More

  3. Expanded Form of a Number | Writing Numbers in Expanded Form | Values

    Apr 27, 25 10:13 AM

    Expanded Form of a Number
    We know that the number written as sum of the place-values of its digits is called the expanded form of a number. In expanded form of a number, the number is shown according to the place values of its…

    Read More

  4. Converting Decimals to Fractions | Solved Examples | Free Worksheet

    Apr 26, 25 04:56 PM

    Converting Decimals to Fractions
    In converting decimals to fractions, we know that a decimal can always be converted into a fraction by using the following steps: Step I: Obtain the decimal. Step II: Remove the decimal points from th…

    Read More

  5. Worksheet on Decimal Numbers | Decimals Number Concepts | Answers

    Apr 26, 25 03:48 PM

    Worksheet on Decimal Numbers
    Practice different types of math questions given in the worksheet on decimal numbers, these math problems will help the students to review decimals number concepts.

    Read More