Volume of a Cuboid

Cuboid is a solid box whose every surface is a rectangle of same area or different areas.

cuboid will have a lengthbreadth and height.

Hence we can conclude that volume is 3 dimensional. To measure the volumes we need to know the measure 3 sides.

Since volume involves 3 sides it is measured in cubic units.

Volume of a cuboid = (length × breadth × height) cubic units.

= (l × b × h) cubic units.

(Since area = ℓ × b)

Volume of a cuboid = area of one surface × height cubic units

Let us look at the given cuboid.

The length of the cuboid = 5 cm

The breadth of the cuboid = 3 cm

The height of cuboid (thickness) = 2 cm

The number of 1 cm cubes in the given cuboid = 30 cubes = 5 × 3 × 2

We find that volume of the given cuboid with length 5 cm, breadth 3 cm and height 2 cm is 30 cu cm.

Therefore, volume of a cuboid = length × breadth × height

Solved examples on volume of a cuboid:

1. Find the volume of a cuboid of dimensions 14 cm × 12 cm × 8 cm.

Solution:

Volume of cuboid = length × breadth × height.

Here, length = 14 cm, breadth = 12 cm and height = 8 cm.

Volume of cuboid = 14 × 12 × 8 cubic cm.

= 1344 cubic cm.

Therefore, volume of cuboid = 1344 cubic cm.

2. Michael made a shoe box with length 8 cm, breadth 6 cm and height 6 cm. Find the volume of the box.

Solution:

Volume of the shoe box = Length × breadth × height.

= 8 × 6 × 6

= 288 cu cm.

3. A fish tank is 40 cm long, 15 cm broad and 10 cm high. What is its volume in cu cm?

Solution:

The length of the fish tank = 40 cm

The breadth of the fish tank = 15 cm

The height of the fish tank = 10 cm

Therefore, the volume of the fish tank = length × breadth × height.

= 40 × 15 × 10 cu. cm

= 6000 cu cm.

4. Find the volume of a cuboid of dimensions 14 cm × 50 mm × 10 cm.

Solution:

Here, length = 14 cm,

[Given, breadth = 50 mm; we need to convert breadth to same unit and then solve. We know, 10 mm = 1 cm. Therefore, 50 mm = 50/10 cm = 5 cm].

Height = 10 cm.

Volume of cuboid = length × breadth × height.

= 14 × 5 × 10

= 700 cubic cm.

Therefore, volume of cuboid = 700 cubic cm.

Note: In a cuboid, when the length, breadth and height are of different units, convert them to a same unit and then solve.

5. Find the volume of a cuboid of dimensions 17 mm × 0.2 cm × 12 mm in cu. cm.

Solution:

Given, length = 17 mm.

We know, 10 mm = 1 cm.

= 17/10 cm.

= 1.7 cm.

Therefore, length = 1.7 cm.

Similarly, height = 12 mm.

We know, 10 mm = 1 cm.

= 12/10 cm.

= 1.2 cm.

Therefore, height = 1.2 cm.

Volume of cuboid = length × breadth × height.

Length = 1.7 cm, breadth = 0.2 cm and height = 1.2 cm.

= 1.7 × 0.2 × 1.2 cu. cm.

= 0.408 cu. cm.

Therefore, volume of cuboid = 0.408 cubic cm.

6. Find the number of cubical boxes of cubical side 3 cm which can be accommodated in carton of dimensions 15 cm × 9 cm × 12 cm.

Solution:

Volume of box = side × side × side.

= 3 × 3 × 3

= 27 cu. cm.

Volume of carton = length × breadth × height.

= 15 × 9 × 12

= 1620 cu. cm.

Number of boxes = Volume of carton/Volume of each box.

= 1620/27

= 60

Therefore, number of cubical boxes = 60.

7. How many bricks each 25 cm long, 10 cm wide and 7.5 cm thick will be required for a wall 20 m long, 2 m high and 0.75 m thick? If bricks sell at $900 per thousand what will it cost to build the wall? Solution: Volume of the wall = 20 m × 2 m × 0.75 m = 20 × 100 cm × 2 × 100 cm × 0.75 × 100 cm Volume of brick = 25 cm × 10 cm × 7.5 cm Number of bricks = Volume of the wall/Volume of the brick = 20 × 100 × 2 × 100 × 0.75 × 100/25 × 10 × 7.5 = 16000 The number of bricks = 16000 The cost of 1 thousand bricks =$ 900

The cost of building the wall = $900 × 16 =$ 14400

Note: While calculating the volume of a cuboid all the dimensions should be changed into the same unit.

1. Find the volume of each of the cuboids.

(i) Length = 5 cm, Breadth = 4 cm and Height = 3 cm

(ii) Length = 15 m, Breadth = 10 m and Height = 2 m

(iii) Length = 0.5 m, Breadth = 3 m and Height = 4 m

(iv) Length = 3.2 cm, Breadth = 2 cm and Height = 8 cm

(v) Length = 5 m, Breadth = 1.5 m and Height = 1.2 m

1. (i) 60 cu cm

(ii) 300 cu m

(iii) 6 cu m

(iv) 51.2 cu cm

(v) 9 cu m

2. Find the volume of these tanks.

(i) Length = 16 cm, Breadth = 60 cm and Height = 20 cm

(ii) Length = 6 m, Breadth = 3 m and Height = 5 m

(iii) Length = 2 m, Breadth = 1.5 m and Height = 1.5 m

(iv) Length = 80 cm, Breadth = 20 cm and Height = 40 cm

(v) Length = 1.2 m, Breadth = 1.2 m and Height = 1 m

2. (i) 19200 cu cm

(ii) 90 cu m

(iii) 4.5 cu m

(iv) 64,000 cu cm

(v) 1.44 cu m

Units of Volume

Cube.

Cuboid.

Worksheet on Volume.

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

Recent Articles

1. Lines of Symmetry | Symmetry of Geometrical Figures | List of Examples

Aug 10, 24 04:59 PM

Learn about lines of symmetry in different geometrical shapes. It is not necessary that all the figures possess a line or lines of symmetry in different figures.

2. Symmetrical Shapes | One, Two, Three, Four & Many-line Symmetry

Aug 10, 24 02:25 AM

Symmetrical shapes are discussed here in this topic. Any object or shape which can be cut in two equal halves in such a way that both the parts are exactly the same is called symmetrical. The line whi…

Aug 10, 24 01:59 AM

In 6th grade math practice you will get all types of examples on different topics along with the step-by-step explanation of the solutions.

Aug 10, 24 01:57 AM

In 6th Grade Algebra Worksheet you will get different types of questions on basic concept of algebra, questions on number pattern, dot pattern, number sequence pattern, pattern from matchsticks, conce…