# Matrix

A rectangular array of mn elements aij into m rows and n columns, where the elements aij belongs to field F, is said to be a matrix of order m × n (or an m × n matrix) over the field F

Definition of a Matrix: A matrix is a rectangular arrangement or array of numbers or functions, in the form of horizontal and vertical lines and subject to certain rules of operations.

Matrices are usually denoted by capital letters of the alphabet.

Very often capital letters A, B, C, ... are used to denote a matrix.

If mn numbers or functions are arranged in the form of a rectangular array Z, having m rows and n columns, then Z is called a m × n matrix.

An m × n matrix is represented in the form

$$Z = \begin{pmatrix} a_{11} & a_{12} & ... & a_{1n}\\ a_{21} & a_{22} & ... & a_{2n}\\ ... & & ... & \\ a_{m1} & a_{m2} & ... & a_{mn} \end{pmatrix}$$, or in the form

$$Z = \begin{bmatrix} a_{11} & a_{12} & ... & a_{1n}\\ a_{21} & a_{22} & ... & a_{2n}\\ ... & & ... & \\ a_{m1} & a_{m2} & ... & a_{mn} \end{bmatrix}$$

F is said to be the field of scalars. If, in particular, F be the field of real (complex) numbers, the matrix is said to be a real (complex) matrix. The element aij appearing in the ith row and jth column of the matrix is said to be the ijth element. The matrix is also denoted by the symbol (aij)m,n.

Horizontal lines of a matrix are called rows. Vertical lines of a matrix are called columns.

Each number or function aij is called its element.

The element of a matrix is usually denoted by a small letter of the alphabet along with two suffixes. The first suffix indicated the number of row and the second one indicated the number of column.

The all numbers or functions aij that is the elements of a matrix are enclosed in brackets [   ].

At times, a pair of parenthesis, (  ), are also used to indicate a matrix. For example, the matrix $$\begin{bmatrix} 2 & 5 & 3 & 4\\ 4 & 7 & 1 & 5\\ 3 & 0 & 5 & 8 \end{bmatrix}$$ is also expressed as $$\begin{pmatrix} 2 & 5 & 3 & 4\\ 4 & 7 & 1 & 5\\ 3 & 0 & 5 & 8 \end{pmatrix}$$

Let us consider the array $$\begin{bmatrix} 4 & 5\\ 2 & 3\\ 7 & 9 \end{bmatrix}$$ of numbers. In this array, there are 3 rows and 2 columns. The element 9 lies in the 3rd row and 2nd column. Similarly, we can fix the position of any other element in the above array.

● Matrix

## You might like these

• ### 11 and 12 Grade Math | Algebra | Trigonometry | Co-ordinate Geometry

11 and 12 grade math practice the topics are divided into three parts. Part one deals with elementary Algebra, part two provides a basic course in trigonometry and part three considers elements of two dimensional Co-ordinate Geometry including solid geometry and mensuration.

• ### Worksheet on Matrix | Solving Matrix Equations Worksheet | Answers

In Worksheet on matrix the questions are based on finding unknown elements and matrices from matrix equation. (i) Find the matrix C(B – A). (ii) Find A(B + C). (iii) Prove that A(B + C) = AB + AC. 2. Show that 6X – X^2 = 9I, where I is the unit matrix.

• ### Worksheet on Matrix Multiplication |Multiplication of Matrices|Answers

Practice the questions given in the Worksheet on Matrix Multiplication. (i) Find AB and BA if possible. (ii) Verify if AB = BA. (iii) Find A^2. (iv) Find AB^2.

• ### Problems on Classification of Matrices | Construct a Null Matrix

Here we will solve different types of Problems on classification of matrices. Indicate the class of each of the matrices. Construct a null matrix of the order 2 × 3 and a unit matrix of the order 3 × 3. Solution: A null matrix of the order 2 × 3 is

• ### Multiplication of Matrices | How to Multiply Matrices? |Rules|Examples

Two matrices A and B are said to be conformable for the product AB if the number of columns of A be equal to the number of rows of B. If A be an m × n matrix and B an n × p matrix then their product AB is defined to be the m × p matrix whose (ij)th element is obtained by