Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Multiplication of a Matrix by a Number

We will discuss here about the process of Multiplication of a matrix by a number.

The multiplication of a matrix A by a number k gives a matrix of the same order as A, in which all the elements are k times the elements of A.

Example:

Let A = \(\begin{bmatrix} 10 & 5\\ -3 & -7 \end{bmatrix}\) and B = \(\begin{bmatrix} -2 & 9\\ 0 & 3\\ -1 & 5 \end{bmatrix}\)

Then, kA = k\(\begin{bmatrix} 10 & 5\\ -3 & -7 \end{bmatrix}\)

              = \(\begin{bmatrix} 10k & 5k\\ -3k & -7k \end{bmatrix}\) and

kB = k\(\begin{bmatrix} -2 & 9\\ 0 & 3\\ -1 & 5 \end{bmatrix}\)

     = \(\begin{bmatrix} -2k & 9k\\ 0 & 3k\\ -1k & 5k \end{bmatrix}\)


Similarly,

\(\begin{bmatrix} a & b\\ c & d \end{bmatrix}\) = \(\frac{1}{k}\)\(\begin{bmatrix} ka & kb\\ kc & kd \end{bmatrix}\).

Multiplication of a Matrix by a Scalar

Solved examples on Multiplication of a Matrix by a Number (Scalar Multiplication):

1. If A = \(\begin{bmatrix} 10 & -9\\ -1 & 4 \end{bmatrix}\), find 4A.

Solution:

4A = 4\(\begin{bmatrix} 10 & -9\\ -1 & 4 \end{bmatrix}\)

     = \(\begin{bmatrix} 4 × 10 & 4 × (-9)\\ 4 × (-1) & 4 × 4 \end{bmatrix}\)

     = \(\begin{bmatrix} 40 & -36\\ -4 & 16 \end{bmatrix}\)

Scalar Multiplication of Matrix

 

2. If M = \(\begin{bmatrix} 2 & -3\\ -4 & 5 \end{bmatrix}\), find -5A.

Solution:

-5M = -5\(\begin{bmatrix} 2 & -3\\ -4 & 5 \end{bmatrix}\)

       = \(\begin{bmatrix} (-5)  × 2 & (-5)  × (-3)\\ (-5)  ×  (-4) & (-5)  × 5 \end{bmatrix}\)

       = \(\begin{bmatrix} -10 & 15\\ 20 & -25 \end{bmatrix}\)





10th Grade Math

From Multiplication of a Matrix by a Number to HOME


Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.