Multiplication of a Matrix by a Number

We will discuss here about the process of Multiplication of a matrix by a number.

The multiplication of a matrix A by a number k gives a matrix of the same order as A, in which all the elements are k times the elements of A.

Example:

Let A = \(\begin{bmatrix} 10 & 5\\ -3 & -7 \end{bmatrix}\) and B = \(\begin{bmatrix} -2 & 9\\ 0 & 3\\ -1 & 5 \end{bmatrix}\)





Then, kA = k\(\begin{bmatrix} 10 & 5\\ -3 & -7 \end{bmatrix}\)

              = \(\begin{bmatrix} 10k & 5k\\ -3k & -7k \end{bmatrix}\) and

kB = k\(\begin{bmatrix} -2 & 9\\ 0 & 3\\ -1 & 5 \end{bmatrix}\)

     = \(\begin{bmatrix} -2k & 9k\\ 0 & 3k\\ -1k & 5k \end{bmatrix}\)


Similarly,

\(\begin{bmatrix} a & b\\ c & d \end{bmatrix}\) = \(\frac{1}{k}\)\(\begin{bmatrix} ka & kb\\ kc & kd \end{bmatrix}\).

Multiplication of a Matrix by a Scalar

Solved examples on Multiplication of a Matrix by a Number (Scalar Multiplication):

1. If A = \(\begin{bmatrix} 10 & -9\\ -1 & 4 \end{bmatrix}\), find 4A.

Solution:

4A = 4\(\begin{bmatrix} 10 & -9\\ -1 & 4 \end{bmatrix}\)

     = \(\begin{bmatrix} 4 × 10 & 4 × (-9)\\ 4 × (-1) & 4 × 4 \end{bmatrix}\)

     = \(\begin{bmatrix} 40 & -36\\ -4 & 16 \end{bmatrix}\)

Scalar Multiplication of Matrix

 

2. If M = \(\begin{bmatrix} 2 & -3\\ -4 & 5 \end{bmatrix}\), find -5A.

Solution:

-5M = -5\(\begin{bmatrix} 2 & -3\\ -4 & 5 \end{bmatrix}\)

       = \(\begin{bmatrix} (-5)  × 2 & (-5)  × (-3)\\ (-5)  ×  (-4) & (-5)  × 5 \end{bmatrix}\)

       = \(\begin{bmatrix} -10 & 15\\ 20 & -25 \end{bmatrix}\)









10th Grade Math

From Multiplication of a Matrix by a Number to HOME


New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.



Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.