Processing math: 100%

Multiplication of Matrices

Two matrices A and B are said to be conformable for the product AB if the number of columns of A be equal to the number of rows of B.

If A be an m × n matrix and B an n × p matrix then their product AB is defined to be the m × p matrix whose (ij)th element is obtained by multiplying the elements of the ijth row of A into the corresponding elements of the jth column of B and summing the products so obtained.

In other words, if A = (aij) m, n, B = (bij) n, p then the product AB is a matrix of order m × p and AB = C = (cij) m, p where (cij) = nk=1aikbkj, i = 1, 2, 3, ...., m; j = 1, 2, 3, ...., p.  

The ijth element of the product AB is obtained by multiplying the corresponding elements of the ithrow of A and jth column of B and adding the products. This sum is called the inner product of the ith row of A and jth column of B.  So the (ij)th element of the product AB is the inner product of the ith row of A and the jth column of B.

If the number of columns of A be not equal to number of rows of B, then AB is not defined.

Let A = [a11a12a21a22a31a32] and B = [b11b12b13b21b22b23]

Here we can see that the matrix A has two columns and the matrix B has two rows. Therefore, A and B are conformable for the product AB.

Thus the product of the matrix A and the matrix B = AB = [a11a12a21a22a31a32] . [b11b12b13b21b22b23]

= [a11b11+a12b21a11b12+a12b22a11b13+a12b23a21b11+a22b21a21b12+a22b22a21b13+a22b23a31b11+a32b21a31b12+a32b22a31b13+a32b23]

Multiplication of Matrices

In the product AB, A is said to be a pre-factor or pre-multiplier and B is said to be a post factor or post-multiplier.

It is obvious that the products AB and BA are two distinct entities. Indeed, one of them may exist while the other may not. In order that both AB and BA should exist, if A be the order of m × n, B must be of order n × m. In this case, however, AB and BA are matrix of different orders. In order that both AB and BA should exist as matrices of the same order, both A and B must be square matrices of the same order.

Note: Matrix multiplication is not commutative. That is, for two matrices A and B, AB ≠ BA, in general.


First of all, if we choose the orders of A and B to be m × n and n × m respectively so that the conformability conditions for both the products AB and BA are satisfied then we observe that the orders of AB and BA are m × m and n × n respectively and therefore AB cannot be equal to BA.

In order that AB and BA may be equal, both of them must be of the same order and this requires that A, B must be square matrices of the same order. However if we choose the order of A and B to be n × n and n × n, then although AB and BA become matrices of the same order, they may not be equal, in general. This can be shown by taking at random.

A = [1520], B = [3146]

Here AB = [232962], BA = [1151620].

In some special cases, however, AB = BA.

For example, let A = [1223], B = [1001].

Here AB = [1223], BA = [1223].

Definition: Two matrices A and B are said to commute with each other if AB = BA. Since AB = BA, A and B must be square matrices of the same order.


Examples of Commuting Matrices:

1. Let A be a square matrix. Then A commutes with A itself.

2. Let A be a square matrix of order n. Then A commutes with In, because A . In = In . A = A.

3. Let A be a square matrix of order n. Then A commutes with On,n, because A. On,n = On,n . A = On,n.

4. Let A be square matrix of order n. Then A commutes with the scalar matrix cIn, because A . cIn . A = cIn . A = cA.






10th Grade Math

From Multiplication of Matrices to HOME




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Multiplication of Decimal Numbers | Multiplying Decimals | Decimals

    May 03, 25 04:38 PM

    Multiplication of Decimal Numbers
    The rules of multiplying decimals are: (i) Take the two numbers as whole numbers (remove the decimal) and multiply. (ii) In the product, place the decimal point after leaving digits equal to the total…

    Read More

  2. Magic Square | Add upto 15 | Add upto 27 | Fibonacci Sequence | Videos

    May 03, 25 10:50 AM

    check the magic square
    In a magic square, every row, column and each of the diagonals add up to the same total. Here is a magic square. The numbers 1 to 9 are placed in the small squares in such a way that no number is repe

    Read More

  3. Division by 10 and 100 and 1000 |Division Process|Facts about Division

    May 03, 25 10:41 AM

    Divide 868 by 10
    Division by 10 and 100 and 1000 are explained here step by step. when we divide a number by 10, the digit at ones place of the given number becomes the remainder and the digits at the remaining places…

    Read More

  4. Multiplication by Ten, Hundred and Thousand |Multiply by 10, 100 &1000

    May 01, 25 11:57 PM

    Multiply by 10
    To multiply a number by 10, 100, or 1000 we need to count the number of zeroes in the multiplier and write the same number of zeroes to the right of the multiplicand. Rules for the multiplication by 1…

    Read More

  5. Adding and Subtracting Large Decimals | Examples | Worksheet | Answers

    May 01, 25 03:01 PM

    Here we will learn adding and subtracting large decimals. We have already learnt how to add and subtract smaller decimals. Now we will consider some examples involving larger decimals.

    Read More