Multiplication of Matrices

Two matrices A and B are said to be conformable for the product AB if the number of columns of A be equal to the number of rows of B.

If A be an m × n matrix and B an n × p matrix then their product AB is defined to be the m × p matrix whose (ij)th element is obtained by multiplying the elements of the ijth row of A into the corresponding elements of the jth column of B and summing the products so obtained.

In other words, if A = (aij) m, n, B = (bij) n, p then the product AB is a matrix of order m × p and AB = C = (cij) m, p where (cij) = \(\sum_{k = 1}^{n} a_{ik}b_{kj}\), i = 1, 2, 3, ...., m; j = 1, 2, 3, ...., p.  

The ijth element of the product AB is obtained by multiplying the corresponding elements of the ithrow of A and jth column of B and adding the products. This sum is called the inner product of the ith row of A and jth column of B.  So the (ij)th element of the product AB is the inner product of the ith row of A and the jth column of B.

If the number of columns of A be not equal to number of rows of B, then AB is not defined.

Let A = \(\begin{bmatrix} a_{11} & a_{12}\\ a_{21} & a_{22}\\ a_{31} & a_{32} \end{bmatrix}\) and B = \(\begin{bmatrix} b_{11} & b_{12} & b_{13}\\ b_{21} & b_{22} & b_{23} \end{bmatrix}\)

Here we can see that the matrix A has two columns and the matrix B has two rows. Therefore, A and B are conformable for the product AB.

Thus the product of the matrix A and the matrix B = AB = \(\begin{bmatrix} a_{11} & a_{12}\\ a_{21} & a_{22}\\ a_{31} & a_{32} \end{bmatrix}\) . \(\begin{bmatrix} b_{11} & b_{12} & b_{13}\\ b_{21} & b_{22} & b_{23} \end{bmatrix}\)

= \(\begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} & a_{11}b_{13} + a_{12}b_{23}\\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} & a_{21}b_{13} + a_{22}b_{23}\\ a_{31}b_{11} + a_{32}b_{21} & a_{31}b_{12} + a_{32}b_{22} & a_{31}b_{13} + a_{32}b_{23} \end{bmatrix}\)

Multiplication of Matrices

In the product AB, A is said to be a pre-factor or pre-multiplier and B is said to be a post factor or post-multiplier.

It is obvious that the products AB and BA are two distinct entities. Indeed, one of them may exist while the other may not. In order that both AB and BA should exist, if A be the order of m × n, B must be of order n × m. In this case, however, AB and BA are matrix of different orders. In order that both AB and BA should exist as matrices of the same order, both A and B must be square matrices of the same order.

Note: Matrix multiplication is not commutative. That is, for two matrices A and B, AB ≠ BA, in general.


First of all, if we choose the orders of A and B to be m × n and n × m respectively so that the conformability conditions for both the products AB and BA are satisfied then we observe that the orders of AB and BA are m × m and n × n respectively and therefore AB cannot be equal to BA.

In order that AB and BA may be equal, both of them must be of the same order and this requires that A, B must be square matrices of the same order. However if we choose the order of A and B to be n × n and n × n, then although AB and BA become matrices of the same order, they may not be equal, in general. This can be shown by taking at random.

A = \(\begin{bmatrix} 1 & 5\\ 2 & 0 \end{bmatrix}\), B = \(\begin{bmatrix} 3 & -1\\ 4 & 6 \end{bmatrix}\)

Here AB = \(\begin{bmatrix} 23 & 29\\ 6 & -2 \end{bmatrix}\), BA = \(\begin{bmatrix} 1 & 15\\ 16 & 20 \end{bmatrix}\).

In some special cases, however, AB = BA.

For example, let A = \(\begin{bmatrix} 1 & 2\\ 2 & 3 \end{bmatrix}\), B = \(\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}\).

Here AB = \(\begin{bmatrix} 1 & 2\\ 2 & 3 \end{bmatrix}\), BA = \(\begin{bmatrix} 1 & 2\\ 2 & 3 \end{bmatrix}\).

Definition: Two matrices A and B are said to commute with each other if AB = BA. Since AB = BA, A and B must be square matrices of the same order.


Examples of Commuting Matrices:

1. Let A be a square matrix. Then A commutes with A itself.

2. Let A be a square matrix of order n. Then A commutes with In, because A . In = In . A = A.

3. Let A be a square matrix of order n. Then A commutes with On,n, because A. On,n = On,n . A = On,n.

4. Let A be square matrix of order n. Then A commutes with the scalar matrix cIn, because A . cIn . A = cIn . A = cA.






10th Grade Math

From Multiplication of Matrices to HOME




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Symmetrical Shapes | One, Two, Three, Four & Many-line Symmetry

    Apr 23, 24 04:50 PM

    Symmetrical Figures
    Symmetrical shapes are discussed here in this topic. Any object or shape which can be cut in two equal halves in such a way that both the parts are exactly the same is called symmetrical. The line whi…

    Read More

  2. Relation between Diameter Radius and Circumference |Problems |Examples

    Apr 23, 24 03:15 PM

    Relation between Radius and Diameter of a Circle
    Relation between diameter radius and circumference are discussed here. Relation between Diameter and Radius: What is the relation between diameter and radius? Solution: Diameter of a circle is twice

    Read More

  3. Circle Math | Terms Related to the Circle | Symbol of Circle O | Math

    Apr 22, 24 01:35 PM

    Circle using a Compass
    In circle math the terms related to the circle are discussed here. A circle is such a closed curve whose every point is equidistant from a fixed point called its centre. The symbol of circle is O. We…

    Read More

  4. Preschool Math Activities | Colorful Preschool Worksheets | Lesson

    Apr 21, 24 10:57 AM

    Preschool Math Activities
    Preschool math activities are designed to help the preschoolers to recognize the numbers and the beginning of counting. We believe that young children learn through play and from engaging

    Read More

  5. Months of the Year | List of 12 Months of the Year |Jan, Feb, Mar, Apr

    Apr 20, 24 05:39 PM

    Months of the Year
    There are 12 months in a year. The months are January, February, march, April, May, June, July, August, September, October, November and December. The year begins with the January month. December is t…

    Read More