Null Matrix

If each element of an m × n matrix be 0, the null element of F, the matrix is said to be the null matrix or the zero matrix of order m × n and it is denoted by Om,n. It is also denoted by O, when no confusion regarding its order arises.

Null or zero Matrix: Whether A is a rectangular or square matrix, A - A is a matrix whose every element is zero. The matrix whose every element is zero is called a null or zero matrix and it is denoted by 0.

Thus for A and 0 of the same order we have A + 0 = A

For example,

\(\begin{bmatrix} 0 & 0 \end{bmatrix}\) is a zero matrix of order 1 × 2.

\(\begin{bmatrix} 0\\ 0 \end{bmatrix}\) is a zero or null matrix of order 2 × 1.

\(\begin{bmatrix} 0 & 0\\ 0 & 0 \end{bmatrix}\) is a null matrix of order 2 × 2.

\(\begin{bmatrix} 5 & 6 & 4\\ 1 & 0 & 9 \end{bmatrix}\) is a null matrix of order 2 × 3.


Problems on Null or zero matrix:

1. Find two nonzero matrices whose product is a zero matrix.

Solution:

Let A = \(\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}\) and B = \(\begin{bmatrix} 0 & 0\\ 0 & 1 \end{bmatrix}\) be two non-zero matrices.

But AB = \(\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}\) \(\begin{bmatrix} 0 & 0\\ 0 & 1 \end{bmatrix}\) = \(\begin{bmatrix} 0 & 0\\ 0 & 0 \end{bmatrix}\) is a null matrix.

 

2. If A = \(\begin{bmatrix} 1 & 2\\ -1 & -1 \end{bmatrix}\), show that A2 + I = 0.

(I and 0 being identity and null matrices of order 2).

Solution:

Given, A = \(\begin{bmatrix} 1 & 2\\ -1 & -1 \end{bmatrix}\)

Now A2 = \(\begin{bmatrix} 1 & 2\\ -1 & -1 \end{bmatrix}\)\(\begin{bmatrix} 1 & 2\\ -1 & -1 \end{bmatrix}\) = \(\begin{bmatrix} -1 & 0\\ 0 & -1 \end{bmatrix}\)

Therefore, A2 + I = \(\begin{bmatrix} -1 & 0\\ 0 & -1 \end{bmatrix}\) + \(\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}\) = \(\begin{bmatrix} 0 & 0\\ 0 & 0 \end{bmatrix}\)

Thus, A2 + I = 0.





10th Grade Math

From Null Matrix to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Estimating Sum and Difference | Reasonable Estimate | Procedure | Math

    May 22, 24 06:21 PM

    The procedure of estimating sum and difference are in the following examples. Example 1: Estimate the sum 5290 + 17986 by estimating the numbers to their nearest (i) hundreds (ii) thousands.

    Read More

  2. Round off to Nearest 1000 |Rounding Numbers to Nearest Thousand| Rules

    May 22, 24 06:14 PM

    Round off to Nearest 1000
    While rounding off to the nearest thousand, if the digit in the hundreds place is between 0 – 4 i.e., < 5, then the hundreds place is replaced by ‘0’. If the digit in the hundreds place is = to or > 5…

    Read More

  3. Round off to Nearest 100 | Rounding Numbers To Nearest Hundred | Rules

    May 22, 24 05:17 PM

    Round off to Nearest 100
    While rounding off to the nearest hundred, if the digit in the tens place is between 0 – 4 i.e. < 5, then the tens place is replaced by ‘0’. If the digit in the units place is equal to or >5, then the…

    Read More

  4. Round off to Nearest 10 |How To Round off to Nearest 10?|Rounding Rule

    May 22, 24 03:49 PM

    Rounding to the Nearest 10
    Round off to nearest 10 is discussed here. Rounding can be done for every place-value of number. To round off a number to the nearest tens, we round off to the nearest multiple of ten. A large number…

    Read More

  5. Rounding Numbers | How do you Round Numbers?|Nearest Hundred, Thousand

    May 22, 24 02:33 PM

    rounding off numbers
    Rounding numbers is required when we deal with large numbers, for example, suppose the population of a district is 5834237, it is difficult to remember the seven digits and their order

    Read More