Multiplication of Two Matrices

Here we will learn the process of Multiplication of two matrices.

Two matrices A and B are conformable (compatible) for multiplication

(i) AB if the number of columns in A = the number of rows in B

(ii) BA if the number of columns in B = the number of rows in A.


To find the product AB when A and B are conformable for multiplication AB

Let A = \(\begin{bmatrix} a & b\\ c & d \end{bmatrix}\) and B = \(\begin{bmatrix} x & y & z\\ l & m & n \end{bmatrix}\)

A is a 2 × 2 matrix and B is a 2 × 3 matrix.

Therefore, the number of columns in A = the number of rows in B = 2.

Therefore, AB can be found because A, B are conformable for multiplication AB.

The product AB is defined as

AB = \(\begin{bmatrix} a & b\\ c & d \end{bmatrix}\) \(\begin{bmatrix} x & y & z\\ l & m & n \end{bmatrix}\)

   = \(\begin{bmatrix} a(x) + b(l) & a(y) + b(m) & a(z) + b(n)\\c(x) +d(l) & c(y) + d(m) & c(z) + d(n) \end{bmatrix}\)

Product of Two Matrices
Multiplication of Two Matrices

Clearly, the product BA is not possible because the number of columns in B(=3) ≠ the number of rows in A(=2).

Note: Given two matrices A and B, AB may be found but BA may not be found. It is also possible that neither AB nor BA can be found, or both AB and BA can be found.


Solved Example on Multiplication of Two Matrices:

1. Let A = \(\begin{bmatrix} 2 & 5\\ -1 & 3 \end{bmatrix}\) and B = \(\begin{bmatrix} 2 & 5\\ -1 & 3 \end{bmatrix}\). Find AB and BA. Is AB = BA?

Solution:

Here, A is of the order 2 × 2 and B is of the order 2 × 2.

So, the number of columns in A = the number of rows in B. Hence, AB can be found. Also, the number of columns in B = the number of rows in A. Hence, BA can also found.

Now,

AB = \(\begin{bmatrix} 2 & 5\\ -1 & 3 \end{bmatrix}\) \(\begin{bmatrix} 2 & 5\\ -1 & 3 \end{bmatrix}\)

     = \(\begin{bmatrix} 2 × 1 + 5 × 4 & 2 × 1 + 5 × (-2)\\ (-1) × 1 + 3 × 4 & (-1) × 1 + 3 × (-2) \end{bmatrix}\) 

     = \(\begin{bmatrix} 22 & -8\\ 11 & -7 \end{bmatrix}\)

BA = \(\begin{bmatrix} 2 & 5\\ -1 & 3 \end{bmatrix}\) \(\begin{bmatrix} 2 & 5\\ -1 & 3 \end{bmatrix}\)

     = \(\begin{bmatrix} 1 × 2 + 1 × (-1) & 1 × 5 + 1 × 3\\ 4 × 2 + (-2) × (-1) & 4 × 5 + (-2) × 3 \end{bmatrix}\) 

     = \(\begin{bmatrix} 1 & 8\\ 10 & 14 \end{bmatrix}\).


Clearly, \(\begin{bmatrix} 22 & -8\\ 11 & -7 \end{bmatrix}\) ≠ \(\begin{bmatrix} 1 & 8\\ 10 & 14 \end{bmatrix}\).

Therefore, AB ≠ BA.


2. Let X = \(\begin{bmatrix} 11 & 4\\ -5 & 2 \end{bmatrix}\) and I = \(\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}\). Prove that XI = IX = A.

Solution:

XI = \(\begin{bmatrix} 11 & 4\\ -5 & 2 \end{bmatrix}\) \(\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}\)

    = \(\begin{bmatrix} 11 × 1 + 4 × 0 & 11 × 0 + 4 × 1\\ -5 × 1 + 2 × 0 & -5 × 0 + 2 × 1 \end{bmatrix}\) 

    = \(\begin{bmatrix} 11 & 4\\ -5 & 2 \end{bmatrix}\) = X

IX = \(\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}\)\(\begin{bmatrix} 11 & 4\\ -5 & 2 \end{bmatrix}\) 

    = \(\begin{bmatrix} 1 × 11 + 0 × (-5) & 1 × 4 + 0 × 2\\ 0 × 11 + 1 × (-5) & 0 × 4 + 1 × 2 \end{bmatrix}\) 

    = \(\begin{bmatrix} 11 & 4\\ -5 & 2 \end{bmatrix}\) = X


Therefore, AI = IA =A. (Proved)





10th Grade Math

From Multiplication of Two Matrices to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Word Problems on Area and Perimeter | Free Worksheet with Answers

    Jul 26, 24 04:58 PM

    word problems on area and perimeter

    Read More

  2. Worksheet on Perimeter | Perimeter of Squares and Rectangle | Answers

    Jul 26, 24 04:37 PM

    Most and Least Perimeter
    Practice the questions given in the worksheet on perimeter. The questions are based on finding the perimeter of the triangle, perimeter of the square, perimeter of rectangle and word problems. I. Find…

    Read More

  3. Perimeter and Area of Irregular Figures | Solved Example Problems

    Jul 26, 24 02:20 PM

    Perimeter of Irregular Figures
    Here we will get the ideas how to solve the problems on finding the perimeter and area of irregular figures. The figure PQRSTU is a hexagon. PS is a diagonal and QY, RO, TX and UZ are the respective d…

    Read More

  4. Perimeter and Area of Plane Figures | Definition of Perimeter and Area

    Jul 26, 24 11:50 AM

    Perimeter of a Triangle
    A plane figure is made of line segments or arcs of curves in a plane. It is a closed figure if the figure begins and ends at the same point. We are familiar with plane figures like squares, rectangles…

    Read More

  5. 5th Grade Math Problems | Table of Contents | Worksheets |Free Answers

    Jul 26, 24 01:35 AM

    In 5th grade math problems you will get all types of examples on different topics along with the solutions. Keeping in mind the mental level of child in Grade 5, every efforts has been made to introdu…

    Read More