Properties of Addition of Matrices

We will discuss about the properties of addition of matrices.

1. Commutative Law of Addition of Matrix: Matrix multiplication is commutative. This says that, if A and B are matrices of the same order such that A + B is defined then A + B = B + A.

Proof:  Let A = [aij]m × n and B = [bij]m × n

Let A + B = C = [cij]m × n and B + A = D = [dij]m × n

Then, cij = aij + bij

              = bij + aij , (by using the definition of addition of matrices)

              = dij

Since C and D are of the same order and cij = dij then, C = D.

i.e., A + B = B + A. This completes the proof.

2. Associative Law of Addition of Matrix: Matrix addition is associative. This says that, if A, B and C are Three matrices of the same order such that the matrices B + C, A + (B + C), A + B, (A + B) + C are defined then A + (B + C) = (A + B) + C.

Proof: Let A = [aij]m × n ,B = [bij]m × n and C = [cij]m × n

Let B + C = D = [dij]m × n , A + B = E = [eij]m × n , A + D = P = [pij]m × n , E + C = Q = [qij]m × n

Then, dij = bij + cij , eij = aij + bij , pij = aij + dij and qij = eij + cij

Now, A + (B + C) = A + D = P = [pij]m × n

and (A + B) + C = E + C = Q = [qij]m × n

Therefore, P and Q are the matrices of the same order and

              pij = aij + dij = aij + (bij + cij)

                   = (aij + bij) + cij , (by the definition of addition of matrices)

                    = eij + cij

                    = qij

Since P and Q are of the same order and pij = qij then, P = Q.

i.e., A + (B + C) = (A + B) + C. This completes the proof.


3. Existence of Additive Identity of Matrix: Let A be the matrix then, A + O = A = O + A

Therefore, ‘O’ is the null matrix of the same order as the matrix A

Proof: Let A = [aij]m × n and O = [0]m × n

Therefore, A + O = [aij] + [0]

                          = [aij + 0]

                          = [aij]

                           = A

Again, O + A = [0] + [aij]

                     = [0 + aij]

                     = [aij]

                     = A

Note: The null matrix is called the additive identity for the matrices.


4. Existence of Additive Inverse of Matrix: Let A be the matrix then, A + (- A) = O = (- A) + A

Proof: Let A = [aij]m × n

Therefore, - A = [- aij]m × n

Now, A + (- A) = [aij] + [- aij]

                       = [aij + (- aij)]

                       = [0]

                        = O

Again (- A) + A = [- aij] + [aij]

                       = [(-aij) + aij]

                       = [0]

                       = O

Therefore, A + (- A) = O = (- A) + A

Note: The matrix – A is called the additive inverse of the matrix A.





10th Grade Math

From Properties of Addition of Matrices to HOME




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 5th Grade Circle Worksheet | Free Worksheet with Answer |Practice Math

    Jul 11, 25 02:14 PM

    Radii of the circRadii, Chords, Diameters, Semi-circles
    In 5th Grade Circle Worksheet you will get different types of questions on parts of a circle, relation between radius and diameter, interior of a circle, exterior of a circle and construction of circl…

    Read More

  2. Construction of a Circle | Working Rules | Step-by-step Explanation |

    Jul 09, 25 01:29 AM

    Parts of a Circle
    Construction of a Circle when the length of its Radius is given. Working Rules | Step I: Open the compass such that its pointer be put on initial point (i.e. O) of ruler / scale and the pencil-end be…

    Read More

  3. Combination of Addition and Subtraction | Mixed Addition & Subtraction

    Jul 08, 25 02:32 PM

    Add and Sub
    We will discuss here about the combination of addition and subtraction. The rules which can be used to solve the sums involving addition (+) and subtraction (-) together are: I: First add

    Read More

  4. Addition & Subtraction Together |Combination of addition & subtraction

    Jul 08, 25 02:23 PM

    Addition and Subtraction Together Problem
    We will solve the different types of problems involving addition and subtraction together. To show the problem involving both addition and subtraction, we first group all the numbers with ‘+’ and…

    Read More

  5. 5th Grade Circle | Radius, Interior and Exterior of a Circle|Worksheet

    Jul 08, 25 09:55 AM

    Semi-circular Region
    A circle is the set of all those point in a plane whose distance from a fixed point remains constant. The fixed point is called the centre of the circle and the constant distance is known

    Read More