Properties of Addition of Matrices

We will discuss about the properties of addition of matrices.

1. Commutative Law of Addition of Matrix: Matrix multiplication is commutative. This says that, if A and B are matrices of the same order such that A + B is defined then A + B = B + A.

Proof:  Let A = [aij]m × n and B = [bij]m × n

Let A + B = C = [cij]m × n and B + A = D = [dij]m × n

Then, cij = aij + bij

              = bij + aij , (by using the definition of addition of matrices)

              = dij

Since C and D are of the same order and cij = dij then, C = D.

i.e., A + B = B + A. This completes the proof.

2. Associative Law of Addition of Matrix: Matrix addition is associative. This says that, if A, B and C are Three matrices of the same order such that the matrices B + C, A + (B + C), A + B, (A + B) + C are defined then A + (B + C) = (A + B) + C.

Proof: Let A = [aij]m × n ,B = [bij]m × n and C = [cij]m × n

Let B + C = D = [dij]m × n , A + B = E = [eij]m × n , A + D = P = [pij]m × n , E + C = Q = [qij]m × n

Then, dij = bij + cij , eij = aij + bij , pij = aij + dij and qij = eij + cij

Now, A + (B + C) = A + D = P = [pij]m × n

and (A + B) + C = E + C = Q = [qij]m × n

Therefore, P and Q are the matrices of the same order and

              pij = aij + dij = aij + (bij + cij)

                   = (aij + bij) + cij , (by the definition of addition of matrices)

                    = eij + cij

                    = qij

Since P and Q are of the same order and pij = qij then, P = Q.

i.e., A + (B + C) = (A + B) + C. This completes the proof.


3. Existence of Additive Identity of Matrix: Let A be the matrix then, A + O = A = O + A

Therefore, ‘O’ is the null matrix of the same order as the matrix A

Proof: Let A = [aij]m × n and O = [0]m × n

Therefore, A + O = [aij] + [0]

                          = [aij + 0]

                          = [aij]

                           = A

Again, O + A = [0] + [aij]

                     = [0 + aij]

                     = [aij]

                     = A

Note: The null matrix is called the additive identity for the matrices.


4. Existence of Additive Inverse of Matrix: Let A be the matrix then, A + (- A) = O = (- A) + A

Proof: Let A = [aij]m × n

Therefore, - A = [- aij]m × n

Now, A + (- A) = [aij] + [- aij]

                       = [aij + (- aij)]

                       = [0]

                        = O

Again (- A) + A = [- aij] + [aij]

                       = [(-aij) + aij]

                       = [0]

                       = O

Therefore, A + (- A) = O = (- A) + A

Note: The matrix – A is called the additive inverse of the matrix A.





10th Grade Math

From Properties of Addition of Matrices to HOME




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Multiplication by Ten, Hundred and Thousand |Multiply by 10, 100 &1000

    Jan 17, 25 12:34 PM

    Multiply by 10
    To multiply a number by 10, 100, or 1000 we need to count the number of zeroes in the multiplier and write the same number of zeroes to the right of the multiplicand. Rules for the multiplication by 1…

    Read More

  2. Multiplying 2-Digit Numbers by 2-Digit Numbers |Multiplying by 2-Digit

    Jan 17, 25 01:46 AM

    Multiplying 2-Digit Numbers by 2-Digit Numbers
    We will learn how to multiply 2-digit numbers by 2-digit numbers.

    Read More

  3. Multiplying 3-Digit Numbers by 2-Digit Numbers | 3-Digit by 2-Digit

    Jan 17, 25 01:17 AM

    Multiplying 3-Digit Numbers by 2-Digit Numbers
    "We will learn how to multiply 3-digit numbers by 2-digit numbers.

    Read More

  4. 4-Digits by 1-Digit Multiplication |Multiply 4-Digit by 1-Digit Number

    Jan 17, 25 12:01 AM

    4-Digit by 1-Digit Multiply
    Here we will learn 4-digits by 1-digit multiplication. We know how to multiply three digit number by one digit number. In the same way we can multiply 4-digit numbers by 1-digit numbers without regrou…

    Read More

  5. Multiplying 3-Digit Number by 1-Digit Number | Three-Digit Multiplicat

    Jan 15, 25 01:54 PM

    Multiplying 3-Digit Number by 1-Digit Number
    Here we will learn multiplying 3-digit number by 1-digit number. In two different ways we will learn to multiply a two-digit number by a one-digit number. 1. Multiply 201 by 3 Step I: Arrange the numb…

    Read More