Worksheet on Matrix Multiplication

Practice the questions given in the Worksheet on Matrix Multiplication.

1. Let A = \(\begin{bmatrix} -10 & 1\\ 3 & -2 \end{bmatrix}\), B = \(\begin{bmatrix} 6\\ -7 \end{bmatrix}\). Find AB and BA if possible.

2. Let A = \(\begin{bmatrix} 1 & -1\\ 3 & 4 \end{bmatrix}\), B = \(\begin{bmatrix} 0 & 1\\ 2 & -3 \end{bmatrix}\).

(i) Find AB and BA if possible.

(ii) Verify if AB = BA.

(iii) Find A2.

(iv) Find AB2.

3. If A = \(\begin{bmatrix} sin \, \, 30^{\circ} + cos \, \, 60^{\circ} & tan \, \, 45^{\circ} - cot \, \, 45^{\circ}\\ cos \, \, 90^{\circ} & sin \, \, 90^{\circ} \end{bmatrix}\) then prove that A3 = A2 =A.

4. If A = \(\begin{bmatrix} cos \, \, \theta & -sin \, \, \theta\\ sin \, \, \theta & cos \, \, \theta \end{bmatrix}\) and B = \(\begin{bmatrix} cos \, \, \theta & sin \, \, \theta\\ -sin \, \, \theta & cos \, \, \theta \end{bmatrix}\), then prove that AB = I, where I is the unit matrix.

5. Let A = \(\begin{bmatrix} -2 & 9\\ 1 & 3 \end{bmatrix}\), B = \(\begin{bmatrix} 1 & 1\\ 1 & 1 \end{bmatrix}\) and C = \(\begin{bmatrix} -1 & 2\\ 3 & -1 \end{bmatrix}\).

(i) Find (AB)C.

(ii) Prove that A(BC) = (AB)C.

Worksheet on Matrix Multiplication


Answer:


1. AB = \(\begin{bmatrix} -67\\ 32 \end{bmatrix}\); BA is not possible because number of columns in B ≠ number of rows in A

2. (i) AB = \(\begin{bmatrix} -2 & 4\\ 8 & -9 \end{bmatrix}\); B = \(\begin{bmatrix} 3 & 4\\ -7 & -14 \end{bmatrix}\)

(ii) AB ≠ BA.

(iii) \(\begin{bmatrix} -2 & -5\\ 15 & 13 \end{bmatrix}\)

(iv) \(\begin{bmatrix} 8 & -14\\ -18 & 35 \end{bmatrix}\)


5. (i) \(\begin{bmatrix} 14 & 7\\ 8 & 4 \end{bmatrix}\)






10th Grade Math

From Worksheet on Matrix Multiplication to HOME PAGE


New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.



Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?