Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Scalar Multiplication of a Matrix

The operation of multiplying variables by a constant scalar factor may properly be called scalar multiplication and the rule of multiplication of matrix by a scalar is that
the product of an m × n matrix A = [aij] by a scalar quantity c is the m × n matrix [bij] where bij = caij.

It is denoted by cA or Ac

For example:

c \(\begin{bmatrix} a_{1 1}& a_{1 2} & a_{1 3}\\ a_{2 1}& a_{2 2} & a_{2 3}\\ a_{3 1}& a_{3 2} & a_{3 3} \end{bmatrix}\)

= \(\begin{bmatrix} ca_{1 1}& ca_{1 2} & ca_{1 3}\\ ca_{2 1}& ca_{2 2} & ca_{2 3}\\ ca_{3 1}& ca_{3 2} & ca_{3 3} \end{bmatrix}\)

= \(\begin{bmatrix} a_{1 1}c& a_{1 2}c & a_{1 3}c\\ a_{2 1}c& a_{2 2}c & a_{2 3}c\\ a_{3 1}c& a_{3 2}c & a_{3 3}c \end{bmatrix}\)

= \(\begin{bmatrix} a_{1 1}& a_{1 2} & a_{1 3}\\ a_{2 1}& a_{2 2} & a_{2 3}\\ a_{3 1}& a_{3 2} & a_{3 3} \end{bmatrix}\) c.

The product of an m × n matrix A = (aij)m, n by a scalar k where k ∈ F, the field of scalars, is a matrix B = (bij)m, n defined by bij = kaij, i = 1, 2, 3, ....., m : j = 1, 2, 3, ....., n and is written as B = kA.

Let A be an m × n matrix and k, p are scalars. Then the following results are obvious.

(i) k(pA) = (kp)A,

(ii) 0A = Om, n,

(iii) kOm, n = Om, n,

(iv) kIn = \(\begin{bmatrix} k & 0 & ... & 0\\ 0 & k & ... & 0\\ ... & ... & ... & ...\\ 0 & 0 & ... & k \end{bmatrix}\),

(v) 1A = A, where 1 is the identity element of F.

The scalar matrix of order n whose diagonal elements are all k can be expressed as kIn.

In general, if c is any number (scalar or any complex number) and a is a matrix of order m × n, then the matrix cA is obtained by multiplying each element of the matrix A by the scalar c.

In other words, A = [aij]m × n

then, cA = [kij]m × n, where kij = caij


Examples on scalar multiplication of a matrix:

1. If A = \(\begin{bmatrix} 3 & 1\\ 2 & 0 \end{bmatrix}\) and c = 3, then

cA = 3\(\begin{bmatrix} 3 & 1\\ 2 & 0 \end{bmatrix}\)

    = \(\begin{bmatrix} 3 × 3 & 3 × 1\\ 3 × 2 & 3 × 0 \end{bmatrix}\)

    = \(\begin{bmatrix} 9 & 3 \\ 6 & 0 \end{bmatrix}\)


2. If A = \(\begin{bmatrix} 0 & -1 & 5\\ -3 & 2 & 1\\ 2 & 0 & -4 \end{bmatrix}\) and c = -5, then

cA = -5\(\begin{bmatrix} 0 & -1 & 5\\ -3 & 2 & 1\\ 2 & 0 & -4 \end{bmatrix}\)

     = \(\begin{bmatrix} (-5) × 0 & (-5) × (-1) & (-5) × 5\\ (-5) × (-3) & (-5) × 2 & (-5) × 1\\ (-5) × 2 & (-5) × 0 & (-5) × (-4) \end{bmatrix}\)

     = \(\begin{bmatrix} 0 & 5 & -25 \\ 15 & -10 & -5 \\ -10 & 0 & 20 \end{bmatrix}\)





10th Grade Math

From Scalar Multiplication of a Matrix to HOME


Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.