Scalar Multiplication of a Matrix

The operation of multiplying variables by a constant scalar factor may properly be called scalar multiplication and the rule of multiplication of matrix by a scalar is that
the product of an m × n matrix A = [aij] by a scalar quantity c is the m × n matrix [bij] where bij = caij.

It is denoted by cA or Ac

For example:

c \(\begin{bmatrix} a_{1 1}& a_{1 2} & a_{1 3}\\ a_{2 1}& a_{2 2} & a_{2 3}\\ a_{3 1}& a_{3 2} & a_{3 3} \end{bmatrix}\)

= \(\begin{bmatrix} ca_{1 1}& ca_{1 2} & ca_{1 3}\\ ca_{2 1}& ca_{2 2} & ca_{2 3}\\ ca_{3 1}& ca_{3 2} & ca_{3 3} \end{bmatrix}\)

= \(\begin{bmatrix} a_{1 1}c& a_{1 2}c & a_{1 3}c\\ a_{2 1}c& a_{2 2}c & a_{2 3}c\\ a_{3 1}c& a_{3 2}c & a_{3 3}c \end{bmatrix}\)

= \(\begin{bmatrix} a_{1 1}& a_{1 2} & a_{1 3}\\ a_{2 1}& a_{2 2} & a_{2 3}\\ a_{3 1}& a_{3 2} & a_{3 3} \end{bmatrix}\) c.

The product of an m × n matrix A = (aij)m, n by a scalar k where k ∈ F, the field of scalars, is a matrix B = (bij)m, n defined by bij = kaij, i = 1, 2, 3, ....., m : j = 1, 2, 3, ....., n and is written as B = kA.

Let A be an m × n matrix and k, p are scalars. Then the following results are obvious.

(i) k(pA) = (kp)A,

(ii) 0A = Om, n,

(iii) kOm, n = Om, n,

(iv) kIn = \(\begin{bmatrix} k & 0 & ... & 0\\ 0 & k & ... & 0\\ ... & ... & ... & ...\\ 0 & 0 & ... & k \end{bmatrix}\),

(v) 1A = A, where 1 is the identity element of F.

The scalar matrix of order n whose diagonal elements are all k can be expressed as kIn.

In general, if c is any number (scalar or any complex number) and a is a matrix of order m × n, then the matrix cA is obtained by multiplying each element of the matrix A by the scalar c.

In other words, A = [aij]m × n

then, cA = [kij]m × n, where kij = caij


Examples on scalar multiplication of a matrix:

1. If A = \(\begin{bmatrix} 3 & 1\\ 2 & 0 \end{bmatrix}\) and c = 3, then

cA = 3\(\begin{bmatrix} 3 & 1\\ 2 & 0 \end{bmatrix}\)

    = \(\begin{bmatrix} 3 × 3 & 3 × 1\\ 3 × 2 & 3 × 0 \end{bmatrix}\)

    = \(\begin{bmatrix} 9 & 3 \\ 6 & 0 \end{bmatrix}\)


2. If A = \(\begin{bmatrix} 0 & -1 & 5\\ -3 & 2 & 1\\ 2 & 0 & -4 \end{bmatrix}\) and c = -5, then

cA = -5\(\begin{bmatrix} 0 & -1 & 5\\ -3 & 2 & 1\\ 2 & 0 & -4 \end{bmatrix}\)

     = \(\begin{bmatrix} (-5) × 0 & (-5) × (-1) & (-5) × 5\\ (-5) × (-3) & (-5) × 2 & (-5) × 1\\ (-5) × 2 & (-5) × 0 & (-5) × (-4) \end{bmatrix}\)

     = \(\begin{bmatrix} 0 & 5 & -25 \\ 15 & -10 & -5 \\ -10 & 0 & 20 \end{bmatrix}\)





10th Grade Math

From Scalar Multiplication of a Matrix to HOME




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Word Problems on Area and Perimeter | Free Worksheet with Answers

    Jul 26, 24 04:58 PM

    word problems on area and perimeter

    Read More

  2. Worksheet on Perimeter | Perimeter of Squares and Rectangle | Answers

    Jul 26, 24 04:37 PM

    Most and Least Perimeter
    Practice the questions given in the worksheet on perimeter. The questions are based on finding the perimeter of the triangle, perimeter of the square, perimeter of rectangle and word problems. I. Find…

    Read More

  3. Perimeter and Area of Irregular Figures | Solved Example Problems

    Jul 26, 24 02:20 PM

    Perimeter of Irregular Figures
    Here we will get the ideas how to solve the problems on finding the perimeter and area of irregular figures. The figure PQRSTU is a hexagon. PS is a diagonal and QY, RO, TX and UZ are the respective d…

    Read More

  4. Perimeter and Area of Plane Figures | Definition of Perimeter and Area

    Jul 26, 24 11:50 AM

    Perimeter of a Triangle
    A plane figure is made of line segments or arcs of curves in a plane. It is a closed figure if the figure begins and ends at the same point. We are familiar with plane figures like squares, rectangles…

    Read More

  5. 5th Grade Math Problems | Table of Contents | Worksheets |Free Answers

    Jul 26, 24 01:35 AM

    In 5th grade math problems you will get all types of examples on different topics along with the solutions. Keeping in mind the mental level of child in Grade 5, every efforts has been made to introdu…

    Read More