Problems on Classification of Matrices

Here we will solve different types of Problems on classification of matrices

1. Let A = \(\begin{bmatrix} -5\\3\\ 2 \end{bmatrix}\), B = \(\begin{bmatrix} 8 & 1\\ -6 & 7 \end{bmatrix}\), C = \(\begin{bmatrix} 6 & 7 & -4\\ -1 & 1 & 2\\ 3 & 0 & 5 \end{bmatrix}\),

X = \(\begin{bmatrix} 3 & 6\\ -2 & 7\\ 0 & 1 \end{bmatrix}\), Y = \(\begin{bmatrix} 8 & 0 & -4 \end{bmatrix}\).

Indicate the class of each of the matrices.

Solution:

A = \(\begin{bmatrix} -5\\3\\ 2 \end{bmatrix}\)

A is a column matrix, because it has exactly one column.


B = \(\begin{bmatrix} 8 & 1\\ -6 & 7 \end{bmatrix}\)

B is a square matrix, because number of rows = number of columns = 2


C = \(\begin{bmatrix} 6 & 7 & -4\\ -1 & 1 & 2\\ 3 & 0 & 5 \end{bmatrix}\)

3 × 3 Order Square Matrix

C is a square matrix, because number of rows = number of columns = 3.


X = \(\begin{bmatrix} 3 & 6\\ -2 & 7\\ 0 & 1 \end{bmatrix}\)

3 × 2 Rectangular Matrix

X is a rectangular matrix, because number of rows ≠ number of columns.


Y = \(\begin{bmatrix} 8 & 0 & -4 \end{bmatrix}\)

Y is a row matrix, because it has exactly one row.


2. Construct a null matrix of the order 2 × 3 and a unit matrix of the order 3 × 3.

Solution:

Null Matrices

A null matrix of the order 2 × 3 is \(\begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix}\).

A unit matrix of the order 3 × 3 is \(\begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix}\).


Practice Problems on Classification of Matrices:

1. let A = [8     -7     5], B = \(\begin{bmatrix} 1 & -5\\ 3 & 7 \end{bmatrix}\), C = \(\begin{bmatrix} 2 & 1 & 6\\ 1 & 0 & 5\\ 3 & 1 & 1 \end{bmatrix}\), M = \(\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}\) and N = \(\begin{bmatrix} 4 & -1\\ 2 & 0\\ 7 & -3 \end{bmatrix}\).

(i) Identify the rectangular matrices.

(ii) Identify the square matrices.

(iii) Identify the row matrices and the column matrices.

Answer:

(i) A and N are the rectangular matrices.

(ii) B, C and M are the square matrices.

(iii) A is the row matrix; and there is no column matrix.


2. (i) Constant the 2 × 3 zero matrix.

(ii) Constant the 4 × 4 unit matrix.

Answer:

(i) 2 × 3 order zero matrix is \(\begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix}\)

(ii) 4 × 4 order unit matrix is \(\begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}\)






10th Grade Math

From Problems on Classification of Matrices to HOME




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 14, 24 02:12 PM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  2. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Dec 14, 24 12:25 PM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More

  3. Patterns in Numbers | Patterns in Maths |Math Patterns|Series Patterns

    Dec 13, 24 08:43 AM

    Complete the Series Patterns
    We see so many patterns around us in our daily life. We know that a pattern is an arrangement of objects, colors, or numbers placed in a certain order. Some patterns neither grow nor reduce but only r…

    Read More

  4. Patterns in Math | Missing Number | Counting Numbers | Worksheets

    Dec 13, 24 12:31 AM

    Finding patterns in math is very important to understand the sequence in the series. We need to find the exact missing number that from the group of numbers. The counting numbers may be counting

    Read More

  5. Concept of Pattern | Similar Patterns in Mathematics | Similar Pattern

    Dec 12, 24 11:22 PM

    Patterns in Necklace
    Concept of pattern will help us to learn the basic number patterns and table patterns. Animals such as all cows, all lions, all dogs and all other animals have dissimilar features. All mangoes have si…

    Read More