Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Subtraction of Two Matrices

We will learn how to find the subtraction of two matrices.

If A and B two matrices of the same order then A – B is a matrix which is the addition of A and –B.

For Example:

Let A = \(\begin{bmatrix} 0 & 1\\ 4 & 5\\ 3 & 7 \end{bmatrix}\) and B = \(\begin{bmatrix} 2 & -6\\ 8 & 4\\ 5 & -2 \end{bmatrix}\)

Then, A – B = A + (-B) = \(\begin{bmatrix} 0 & 1\\ 4 & 5\\ 3 & 7 \end{bmatrix}\) + \(\begin{bmatrix} -2 & 6\\ -8 & -4\\ -5 & 2 \end{bmatrix}\)

= \(\begin{bmatrix} 0 - 2 & 1 + 6\\ 4 - 8 & 5 - 4\\ 3 - 5 & 7 + 2 \end{bmatrix}\)

= \(\begin{bmatrix} - 2 & 7\\ -4 & 1\\ -2  & 9 \end{bmatrix}\)

Subtraction of Two Matrices

Note: The elements of A – B can also be obtained by subtracting the elements of B from the corresponding elements of A.

For Example:

Let A = \(\begin{bmatrix} 15 & -8\\ 6 & 1 \end{bmatrix}\) and B = \(\begin{bmatrix} 1 & 4\\ -1 & 3 \end{bmatrix}\)

Now subtracting the elements of B from the corresponding elements of A we get,

A – B = \(\begin{bmatrix} 15 & -8\\ 6 & 1 \end{bmatrix}\) - \(\begin{bmatrix} 1 & 4\\ -1 & 3 \end{bmatrix}\)

         = \(\begin{bmatrix} 15 - 1 & -8 - 4\\ 6 + 1 & 1 - 3 \end{bmatrix}\)

         = \(\begin{bmatrix} 14 & -12\\ 7 & -2 \end{bmatrix}\).

 

Solved Examples on Subtraction of Two Matrices:

1. If M = \(\begin{bmatrix} 2 & 5\\ -1 & 3 \end{bmatrix}\) and B = \(\begin{bmatrix} 1 & 1\\ 4 & -2 \end{bmatrix}\), find M – N.

Solution:

M – N = \(\begin{bmatrix} 2 & 5\\ -1 & 3 \end{bmatrix}\) - \(\begin{bmatrix} 1 & 1\\ 4 & -2 \end{bmatrix}\)

         = \(\begin{bmatrix} 2 & 5\\ -1 & 3 \end{bmatrix}\) + \(\begin{bmatrix} -1 & -1\\ -4 & 2 \end{bmatrix}\)

         = \(\begin{bmatrix} 2 - 1 & 5 - 1\\ -1 - 4 & 3 + 2\end{bmatrix}\)

         = \(\begin{bmatrix} 1 & 4\\ -5 & 5\end{bmatrix}\).

Matrix Subtraction

2. If X = \(\begin{bmatrix} 16 & -5\\ 4 & 1 \end{bmatrix}\) and Z = \(\begin{bmatrix} -13 & 4\\ 2 & 0 \end{bmatrix}\), find X – Z.

Solution:

X – Z = \(\begin{bmatrix} 16 & -5\\ 4 & 1 \end{bmatrix}\) -  \(\begin{bmatrix} -13 & 4\\ 2 & 0 \end{bmatrix}\)

         = \(\begin{bmatrix} 16 & -5\\ 4 & 1 \end{bmatrix}\) + \(\begin{bmatrix} 13 & -4\\ -2 & 0\end{bmatrix}\)

         = \(\begin{bmatrix} 16 + 13 & -5 - 4\\ 4 - 2 & 1 - 0\end{bmatrix}\)

         = \(\begin{bmatrix} 29 & -9\\ 2 & 1\end{bmatrix}\).






10th Grade Math

From Subtraction of Two Matrices to HOME


Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.