Subtraction of Matrices

Two matrices A and B are said to be conformable for subtraction if they have the same order (i.e. same number of rows and columns) and their difference A - B is defined to be the addition of A and (-B).

i.e., A – B = A + (-B)

For example:

\(\begin{bmatrix} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33} \end{bmatrix}\) - \(\begin{bmatrix} b_{11} & b_{12} & b_{13}\\ b_{21} & b_{22} & b_{23}\\ b_{31} & b_{32} & b_{33} \end{bmatrix}\)

= \(\begin{bmatrix} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33} \end{bmatrix}\) + \(\begin{bmatrix} - b_{11} & - b_{12} & - b_{13}\\ - b_{21} & - b_{22} & - b_{23}\\ -b_{31} & - b_{32} & - b_{33} \end{bmatrix}\)

= \(\begin{bmatrix} a_{11} - b_{11} & a_{12} - b_{12} & a_{13} - b_{13}\\ a_{21} - b_{21} & a_{22} - b_{22} & a_{23} - b_{23}\\ a_{31} - b_{31} & a_{32} - b_{32} & a_{33} - b_{33} \end{bmatrix}\)

Again, if A  = (aij)m, n and B = (bij)m, n then their difference A - B is the matrix C = (cij)m,n where cij = aij - bij, i = 1, 2, 3, ...... , m, j = 1, 2, 3, ...., n.

For example:

If A = \(\begin{bmatrix} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33} \end{bmatrix}\) and B = \(\begin{bmatrix} b_{11} & b_{12} & b_{13}\\ b_{21} & b_{22} & b_{23}\\ b_{31} & b_{32} & b_{33} \end{bmatrix}\), then

A - B = \(\begin{bmatrix} a_{11} - b_{11} & a_{12} - b_{12} & a_{13} - b_{13}\\ a_{21} - b_{21} & a_{22} - b_{22} & a_{23} - b_{23}\\ a_{31} - b_{31} & a_{32} - b_{32} & a_{33} - b_{33} \end{bmatrix}\) = C

Note: If A and B be matrices of different orders, then A - B is not defined.


Example on Subtraction of Matrices:

1. If A = \(\begin{bmatrix} 1 & 2\\ 3 & 1 \end{bmatrix}\) and B = \(\begin{bmatrix} 2 & 4\\ 1 & 3 \end{bmatrix}\), then 

A - B = \(\begin{bmatrix} 1 & 2\\ 3 & 1 \end{bmatrix}\) - \(\begin{bmatrix} 2 & 4\\ 1 & 3 \end{bmatrix}\)

         = \(\begin{bmatrix} 1 - 2 & 2 - 4\\ 3 - 1 & 1 - 3\end{bmatrix}\)

         = \(\begin{bmatrix} -1 & -2\\ 2 & -2 \end{bmatrix}\)


2. If A = \(\begin{bmatrix} 0 & 1 & 2\\ 2 & -3 & 1\\ 1 & -2 & 0 \end{bmatrix}\), B = \(\begin{bmatrix} -1 & 0 & 2\\ 3 & 2 & 1\\ -2 & -1 & 0 \end{bmatrix}\) and M = \(\begin{bmatrix} 4 & 2\\ 1 & 3 \end{bmatrix}\), then 

A - B = \(\begin{bmatrix} 0 & 1 & 2\\ 2 & -3 & 1\\ 1 & -2 & 0 \end{bmatrix}\) - \(\begin{bmatrix} -1 & 0 & 2\\ 3 & 2 & 1\\ -2 & -1 & 0 \end{bmatrix}\) 

        = \(\begin{bmatrix} 0 - 1 & 1 - 0 & 2 - 2\\ 2 - 3 & -3 - 2 & 1 - 1\\ 1 - (-2) & -2 - (-1) & 0 - 0 \end{bmatrix}\)

       = \(\begin{bmatrix} -1 & 1 & 0\\ -1 & -5 & 0\\ 3 & -1 & 0 \end{bmatrix}\)

A - M is not defined since the order of matrix M is not equal to the order of matrix A.

B - M is also not defined since the order of matrix M is not equal to the order of matrix B.


Note: Let A and B are m × n matrices and c, d are scalars. Then the following results are obvious. 

I. c(A - B) = cA - cB,

For Example:

If A = \(\begin{bmatrix} 1 & 3\\ 2 & 4 \end{bmatrix}\) and B =  \(\begin{bmatrix} 2 & 1\\ 3 & 0 \end{bmatrix}\) are m × n matrices and 4 is scalar. Then 

\[4\left (\begin{bmatrix} 1 & 3\\ 2 & 4 \end{bmatrix} - \begin{bmatrix} 2 & 1\\ 3 & 0 \end{bmatrix}\right ) = 4\begin{bmatrix} 1 & 3\\ 2 & 4 \end{bmatrix} - 4 \begin{bmatrix} 2 & 1\\ 3 & 0 \end{bmatrix}\]


II. (c - d)A = cA - dA.

For Example:

If A = \(\begin{bmatrix} 2 & 0\\ -1 & 5 \end{bmatrix}\) be m × n matrix and 4, 2 are scalars. Then 

\[\left (4 - 2\right )\begin{bmatrix} 2 & 0\\ -1 & 5 \end{bmatrix} = 4\begin{bmatrix} 2 & 0\\ -1 & 5 \end{bmatrix} - 2\begin{bmatrix} 2 & 0\\ -1 & 5 \end{bmatrix}\]





10th Grade Math

From Subtraction of Matrices to HOME




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Expanded form of Decimal Fractions |How to Write a Decimal in Expanded

    Jul 22, 24 03:27 PM

    Expanded form of Decimal
    Decimal numbers can be expressed in expanded form using the place-value chart. In expanded form of decimal fractions we will learn how to read and write the decimal numbers. Note: When a decimal is mi…

    Read More

  2. Worksheet on Decimal Numbers | Decimals Number Concepts | Answers

    Jul 22, 24 02:41 PM

    Worksheet on Decimal Numbers
    Practice different types of math questions given in the worksheet on decimal numbers, these math problems will help the students to review decimals number concepts.

    Read More

  3. Decimal Place Value Chart |Tenths Place |Hundredths Place |Thousandths

    Jul 21, 24 02:14 PM

    Decimal place value chart
    Decimal place value chart are discussed here: The first place after the decimal is got by dividing the number by 10; it is called the tenths place.

    Read More

  4. Thousandths Place in Decimals | Decimal Place Value | Decimal Numbers

    Jul 20, 24 03:45 PM

    Thousandths Place in Decimals
    When we write a decimal number with three places, we are representing the thousandths place. Each part in the given figure represents one-thousandth of the whole. It is written as 1/1000. In the decim…

    Read More

  5. Hundredths Place in Decimals | Decimal Place Value | Decimal Number

    Jul 20, 24 02:30 PM

    Hundredths Place in Decimals
    When we write a decimal number with two places, we are representing the hundredths place. Let us take plane sheet which represents one whole. Now, we divide the sheet into 100 equal parts. Each part r…

    Read More