Two matrices A and B are said to be conformable for subtraction if they have the same order (i.e. same number of rows and columns) and their difference A - B is defined to be the addition of A and (-B).
i.e., A – B = A + (-B)
For example:
\(\begin{bmatrix} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33} \end{bmatrix}\) - \(\begin{bmatrix} b_{11} & b_{12} & b_{13}\\ b_{21} & b_{22} & b_{23}\\ b_{31} & b_{32} & b_{33} \end{bmatrix}\)
= \(\begin{bmatrix} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33} \end{bmatrix}\) + \(\begin{bmatrix} - b_{11} & - b_{12} & - b_{13}\\ - b_{21} & - b_{22} & - b_{23}\\ -b_{31} & - b_{32} & - b_{33} \end{bmatrix}\)
= \(\begin{bmatrix} a_{11} - b_{11} & a_{12} - b_{12} & a_{13} - b_{13}\\ a_{21} - b_{21} & a_{22} - b_{22} & a_{23} - b_{23}\\ a_{31} - b_{31} & a_{32} - b_{32} & a_{33} - b_{33} \end{bmatrix}\)
Again, if A = (aij)m, n and B = (bij)m, n then their difference A - B is the matrix C = (cij)m,n where cij = aij - bij, i = 1, 2, 3, ...... , m, j = 1, 2, 3, ...., n.
For example:
If A = \(\begin{bmatrix} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33} \end{bmatrix}\) and B = \(\begin{bmatrix} b_{11} & b_{12} & b_{13}\\ b_{21} & b_{22} & b_{23}\\ b_{31} & b_{32} & b_{33} \end{bmatrix}\), then
A - B = \(\begin{bmatrix} a_{11} - b_{11} & a_{12} - b_{12} & a_{13} - b_{13}\\ a_{21} - b_{21} & a_{22} - b_{22} & a_{23} - b_{23}\\ a_{31} - b_{31} & a_{32} - b_{32} & a_{33} - b_{33} \end{bmatrix}\) = C
Note: If A and B be matrices of different orders, then A - B is not defined.
Example on Subtraction of Matrices:
1. If A = \(\begin{bmatrix} 1 & 2\\ 3 & 1 \end{bmatrix}\) and B = \(\begin{bmatrix} 2 & 4\\ 1 & 3 \end{bmatrix}\), then
A - B = \(\begin{bmatrix} 1 & 2\\ 3 & 1 \end{bmatrix}\) - \(\begin{bmatrix} 2 & 4\\ 1 & 3 \end{bmatrix}\)
= \(\begin{bmatrix} 1 - 2 & 2 - 4\\ 3 - 1 & 1 - 3\end{bmatrix}\)
= \(\begin{bmatrix} -1 & -2\\ 2 & -2 \end{bmatrix}\)
2. If A = \(\begin{bmatrix} 0 & 1 & 2\\ 2 & -3 & 1\\ 1 & -2 & 0 \end{bmatrix}\), B = \(\begin{bmatrix} -1 & 0 & 2\\ 3 & 2 & 1\\ -2 & -1 & 0 \end{bmatrix}\) and M = \(\begin{bmatrix} 4 & 2\\ 1 & 3 \end{bmatrix}\), then
A - B = \(\begin{bmatrix} 0 & 1 & 2\\ 2 & -3 & 1\\ 1 & -2 & 0 \end{bmatrix}\) - \(\begin{bmatrix} -1 & 0 & 2\\ 3 & 2 & 1\\ -2 & -1 & 0 \end{bmatrix}\)
= \(\begin{bmatrix} 0 - 1 & 1 - 0 & 2 - 2\\ 2 - 3 & -3 - 2 & 1 - 1\\ 1 - (-2) & -2 - (-1) & 0 - 0 \end{bmatrix}\)
= \(\begin{bmatrix} -1 & 1 & 0\\ -1 & -5 & 0\\ 3 & -1 & 0 \end{bmatrix}\)
A - M is not defined since the order of matrix M is not equal to the order of matrix A.
B - M is also not defined since the order of matrix M is not equal to the order of matrix B.
Note: Let A and B are m × n matrices and c, d are scalars. Then the following results are obvious.
I. c(A - B) = cA - cB,
For Example:
If A = \(\begin{bmatrix} 1 & 3\\ 2 & 4 \end{bmatrix}\) and B = \(\begin{bmatrix} 2 & 1\\ 3 & 0 \end{bmatrix}\) are m × n matrices and 4 is scalar. Then
\[4\left (\begin{bmatrix} 1 & 3\\ 2 & 4 \end{bmatrix} - \begin{bmatrix} 2 & 1\\ 3 & 0 \end{bmatrix}\right ) = 4\begin{bmatrix} 1 & 3\\ 2 & 4 \end{bmatrix} - 4 \begin{bmatrix} 2 & 1\\ 3 & 0 \end{bmatrix}\]
II. (c - d)A = cA - dA.
For Example:
If A = \(\begin{bmatrix} 2 & 0\\ -1 & 5 \end{bmatrix}\) be m × n matrix and 4, 2 are scalars. Then
\[\left (4 - 2\right )\begin{bmatrix} 2 & 0\\ -1 & 5 \end{bmatrix} = 4\begin{bmatrix} 2 & 0\\ -1 & 5 \end{bmatrix} - 2\begin{bmatrix} 2 & 0\\ -1 & 5 \end{bmatrix}\]
From Subtraction of Matrices to HOME
Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.
Dec 12, 24 09:20 AM
Dec 09, 24 10:39 PM
Dec 09, 24 01:08 AM
Dec 08, 24 11:19 PM
Dec 07, 24 03:38 PM
New! Comments
Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.