# Problems on Eliminate Theta

Here we will solve various types of problems on eliminate theta from the given equations.

We know, “eliminate theta from the equations” means that the equations are combined in such a way into one equation that it remains valid without the theta (θ) appearing in this new equation.

Worked-out problems on eliminate theta (θ) between the equations:

1. Eliminate theta between the equations:

x = a sin θ + b cos θ and y = a cos θ – b sin θ

OR,

If x = a sin θ + b cos θ and y = a cos θ –b sin θ, prove that

x2 + y2 = a2 + b2.

Solution:

We have x2 + y2 = (a sin θ + b cos θ)2 + (a cos θ – b sin θ)2

= (a2 sin2 θ + b2 cos2 θ + 2ab sin θ cos θ) + (a2 cos2 θ + b2 sin2 θ - 2ab sin θ cos θ)

= a2 sin2 θ + b2 cos2 θ + 2ab sin θ cos θ + a2 cos2 θ + b2 sin2 θ - 2ab sin θ cos θ

= a2 sin2 θ + b2 cos2 θ + a2 cos2 θ + b2 sin2 θ

= a2 sin2 θ + a2 cos2 θ + b2 sin2 θ + b2 cos2 θ

= a2 (sin2 θ + cos2 θ) + b2 (sin2 θ + cos2 θ)

= a2 (1) + b2 (1); [since, sin2 θ + cos2 θ = 1]

= a2 + b2

Therefore, x2 + y2 = a2 + b2

which is the required θ-eliminate.

2. Using the trig-identity we will solve the problems on eliminate theta (θ) between the equations:

tan θ - cot θ = a and cos θ + sin θ = b.

Solution:

tan θ – cot θ = a ………. (A)

cos θ + sin θ = b ………. (B)

Squaring both sides of (B) we get,

cos2 θ + sin2 θ + 2cos θ sin θ = b2

or, 1 + 2 cos θ sin θ = b2

or, 2 cos θ sin θ = b2 - 1 ………. (C)

Again, from (A) we get, (sin θ/cos θ) – (cos θ/sin θ) = a

or, (sin2 θ - cos2 θ)/(cos θ sin θ) = a

or, sin2θ - cos2θ = a sin θ cos θ

or, (sin θ + cos θ) (sin θ - cos θ) = a ∙ (b2 - 1)/2 ………. [by (C)]

or, b(sin θ - cos θ)= (½) a (b2 - 1) [by (B)]

or, b2 (sin θ - cos θ)2 = (1/4) a2 (b2 - 1)2, [Squaring both the sides]

or, b2 [(sin θ + cos θ)2 - 4 sinθ cos θ] = (1/4) a2 (b2 - 1)2

or, b2 [b2 - 2 ∙ (b2 - 1)] = (1/4) a2 (b2 - 1)2 [from (B) and (C)]

or, 4b2 (2 - b2) = a2 (b2 - 1)2

which is the required θ-eliminate.

Show how to use the trigonometric identities to solve the problems on eliminate theta form the given two equations.

3. x sin θ - y cos θ = √(x2 + y2) and cos2 θ/a2 + sin2 θ/b2 = 1/(x2 + y2)

Solution:

x sin θ - y cos θ = √(x2 + y2) ..........…. (A)

cos2 θ/a2 + sin2 θ/b2 = 1/(x2 + y2) ..........…. (B)

Squaring both sides of (A) we get,

x2 sin2 θ + y2 cos2 θ - 2xy sin θ cos θ = x2 + y2

or, x2 (1 - sin2 θ) + y2 (1 - cos2 θ) + 2xy sin θ cos θ = 0

or, x2 cos2 θ + y2 sin2 θ + 2 ∙ x cos θ ∙ y sin θ = 0

or, (x cos θ + y sin θ)2 = 0

or, x cos θ + y sin θ = 0

or, x cos θ = - y sin θ

or, cos θ/(-y) = sin θ/x

or, cos2 θ/y2 = sin2 θ/x2 = (cos2 θ + sin2 θ)/(y2 + x2) = 1/(x2 + y2)

Therefore, cos2 θ = y2/(x2 + y2) and sin2 θ = x2/(x2 + y2 )

Putting the values of cos2 θ and sin2 θ in (B) we get,

(1/a2) ∙ {y2/(x2} + y2) + (1/b2) ∙ {x2/(x2 + y2)} = 1/(x2 + y2)

Or, y2/a2 + x2/b2 = 1 (Since, x2 + y2 ≠0)

which is the required θ-eliminate.

The explanation will help us to understand how the steps are used technically to work-out the problems on eliminate theta form the given equations.

Trigonometric Functions

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

## Recent Articles

1. ### Addition of Three 1-Digit Numbers | Add 3 Single Digit Numbers | Steps

Sep 19, 24 01:15 AM

To add three numbers, we add any two numbers first. Then, we add the third number to the sum of the first two numbers. For example, let us add the numbers 3, 4 and 5. We can write the numbers horizont…

2. ### Adding 1-Digit Number | Understand the Concept one Digit Number

Sep 18, 24 03:29 PM

Understand the concept of adding 1-digit number with the help of objects as well as numbers.

3. ### Addition of Numbers using Number Line | Addition Rules on Number Line

Sep 18, 24 02:47 PM

Addition of numbers using number line will help us to learn how a number line can be used for addition. Addition of numbers can be well understood with the help of the number line.

4. ### Counting Before, After and Between Numbers up to 10 | Number Counting

Sep 17, 24 01:47 AM

Counting before, after and between numbers up to 10 improves the child’s counting skills.