Problems on Trigonometric Ratios of an Angle

We will learn how to solve different types of problems on trigonometric ratios of an angle.

1. Which of the six trigonometric function are positive for x = -10π/3?

Solution: 

Given, x = -10π/3

We know that terminal position of x + 2nπ, where n ∈ Z, is the same as that of x.

Here, -10π/3 + 2 × 2π = 2π/3, which lies in the second quadrant.

Note: This process of finding a co-terminal angle or reference number results in an angle or number α, 0 ≤ α < 2π, so that we can determine in which quadrant the given angle or number lies.

Therefore, x = -10π/3 lies in the second quadrant.

Hence, sin x and csc x are positive while the other four trigonometric functions i.e. cos x, tan x, cot x and sec x are negative.

 

2. Express cos (- 1555°) in terms of the ratio of a positive angle less than 30°.

Solution:

cos(- 1555°) = cos 1555°, since we know cos (- θ) = cos θ]

= cos (17 × 90° + 25°)

= - sin 25°; since the angle 1555° lies in the second d quadrant and cos ratio is negative in this quadrant. Again, in  the angle 1555° = 17 × 90° + 25°, multiplier of 90° is 17, which is an odd integer ; for this reason cos ratio has changed to sin.

Note: The trigonometrical ratio of an angle of any magnitude can always be expressed in terms of ratio of a positive angle less than 30°.

 

3. If θ = 170° find the sign of (sin θ + cos θ)

Solution: 

sin θ = sin 170° = sin (2 × 90° - 10°) = sin 10°

and cos θ = cos 170° = cos (1 × 90° + 80°)= - sin 80°

Therefore, sin θ + cos θ = sin 10° - sin 80°

Since sin 10° > 0, sin 80° > 0 and sin 80° > sin 10°, thus sin 10° - sin 80° < 0 (i.e. negative) so, the value of (sin θ + cos θ) is negative.

4. Find the value of cos 200° sin 160° + sin (- 340°) cos (- 380°).

Solution:

Given, cos 200° sin 160° + sin (- 340°) cos (- 380°)

= cos (2 × 90° + 20°) sin (1 × 90° + 70°) + (- sin 340°) cos 380°

= - cos 20° cos 70° - sin (3 × 90° + 70°) cos (4 × 90° + 20°)

= - cos 20° cos 700 - (- cos 70°) cos 20°

= - cos 200 cos 70° + cos 70° cos 20°

= 0

 Trigonometric Functions




11 and 12 Grade Math

From Problems on Trigonometric Ratios of an Angle to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 5th Grade Circle Worksheet | Free Worksheet with Answer |Practice Math

    Jul 11, 25 02:14 PM

    Radii of the circRadii, Chords, Diameters, Semi-circles
    In 5th Grade Circle Worksheet you will get different types of questions on parts of a circle, relation between radius and diameter, interior of a circle, exterior of a circle and construction of circl…

    Read More

  2. Construction of a Circle | Working Rules | Step-by-step Explanation |

    Jul 09, 25 01:29 AM

    Parts of a Circle
    Construction of a Circle when the length of its Radius is given. Working Rules | Step I: Open the compass such that its pointer be put on initial point (i.e. O) of ruler / scale and the pencil-end be…

    Read More

  3. Combination of Addition and Subtraction | Mixed Addition & Subtraction

    Jul 08, 25 02:32 PM

    Add and Sub
    We will discuss here about the combination of addition and subtraction. The rules which can be used to solve the sums involving addition (+) and subtraction (-) together are: I: First add

    Read More

  4. Addition & Subtraction Together |Combination of addition & subtraction

    Jul 08, 25 02:23 PM

    Addition and Subtraction Together Problem
    We will solve the different types of problems involving addition and subtraction together. To show the problem involving both addition and subtraction, we first group all the numbers with ‘+’ and…

    Read More

  5. 5th Grade Circle | Radius, Interior and Exterior of a Circle|Worksheet

    Jul 08, 25 09:55 AM

    Semi-circular Region
    A circle is the set of all those point in a plane whose distance from a fixed point remains constant. The fixed point is called the centre of the circle and the constant distance is known

    Read More