# Problems on Trigonometric Ratios of an Angle

We will learn how to solve different types of problems on trigonometric ratios of an angle.

1. Which of the six trigonometric function are positive for x = -10π/3?

Solution:

Given, x = -10π/3

We know that terminal position of x + 2nπ, where n ∈ Z, is the same as that of x.

Here, -10π/3 + 2 × 2π = 2π/3, which lies in the second quadrant.

Note: This process of finding a co-terminal angle or reference number results in an angle or number α, 0 ≤ α < 2π, so that we can determine in which quadrant the given angle or number lies.

Therefore, x = -10π/3 lies in the second quadrant.

Hence, sin x and csc x are positive while the other four trigonometric functions i.e. cos x, tan x, cot x and sec x are negative.

2. Express cos (- 1555°) in terms of the ratio of a positive angle less than 30°.

Solution:

cos(- 1555°) = cos 1555°, since we know cos (- θ) = cos θ]

= cos (17 × 90° + 25°)

= - sin 25°; since the angle 1555° lies in the second d quadrant and cos ratio is negative in this quadrant. Again, in  the angle 1555° = 17 × 90° + 25°, multiplier of 90° is 17, which is an odd integer ; for this reason cos ratio has changed to sin.

Note: The trigonometrical ratio of an angle of any magnitude can always be expressed in terms of ratio of a positive angle less than 30°.

3. If θ = 170° find the sign of (sin θ + cos θ)

Solution:

sin θ = sin 170° = sin (2 × 90° - 10°) = sin 10°

and cos θ = cos 170° = cos (1 × 90° + 80°)= - sin 80°

Therefore, sin θ + cos θ = sin 10° - sin 80°

Since sin 10° > 0, sin 80° > 0 and sin 80° > sin 10°, thus sin 10° - sin 80° < 0 (i.e. negative) so, the value of (sin θ + cos θ) is negative.

4. Find the value of cos 200° sin 160° + sin (- 340°) cos (- 380°).

Solution:

Given, cos 200° sin 160° + sin (- 340°) cos (- 380°)

= cos (2 × 90° + 20°) sin (1 × 90° + 70°) + (- sin 340°) cos 380°

= - cos 20° cos 70° - sin (3 × 90° + 70°) cos (4 × 90° + 20°)

= - cos 20° cos 700 - (- cos 70°) cos 20°

= - cos 200 cos 70° + cos 70° cos 20°

= 0

Trigonometric Functions

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

## Recent Articles

1. ### Comparison of Numbers | Compare Numbers Rules | Examples of Comparison

May 18, 24 02:59 PM

Rule I: We know that a number with more digits is always greater than the number with less number of digits. Rule II: When the two numbers have the same number of digits, we start comparing the digits…

2. ### Numbers | Notation | Numeration | Numeral | Estimation | Examples

May 12, 24 06:28 PM

Numbers are used for calculating and counting. These counting numbers 1, 2, 3, 4, 5, .......... are called natural numbers. In order to describe the number of elements in a collection with no objects

3. ### Face Value and Place Value|Difference Between Place Value & Face Value

May 12, 24 06:23 PM

What is the difference between face value and place value of digits? Before we proceed to face value and place value let us recall the expanded form of a number. The face value of a digit is the digit…

4. ### Patterns in Numbers | Patterns in Maths |Math Patterns|Series Patterns

May 12, 24 06:09 PM

We see so many patterns around us in our daily life. We know that a pattern is an arrangement of objects, colors, or numbers placed in a certain order. Some patterns neither grow nor reduce but only r…