Trigonometrical Ratios of 0°

How to find the Trigonometrical Ratios of 0°?

Let a rotating line \(\overrightarrow{OX}\) rotates about O in the anti clockwise sense and starting from its initial position \(\overrightarrow{OX}\) traces out ∠XOY = θ where θ is very small.

Trigonometrical Ratios of 0°

Take a point P on \(\overrightarrow{OY}\)  and draw \(\overline{PQ}\) perpendicular to \(\overrightarrow{OX}\)  .

Now according to the definition of trigonometric ratio we get,
sin θ = \(\frac{\overline{PQ}}{\overline{OP}}\);
cos θ = \(\frac{\overline{OQ}}{\overline{OP}}\) and
tan θ = \(\frac{\overline{PQ}}{\overline{OQ}}\)           

When θ is slowly decreases and finally tends to zero then,
(a) \(\overline{PQ}\) slowly decreases and finally tends to zero and

(b) the numerical difference between \(\overline{OP}\)  and \(\overline{OQ}\)  becomes very small and finally tends to zero.

Hence, in the Limit when θ → 00 then \(\overline{PQ}\) → 0 and \(\overline{OP}\)   → \(\overline{OQ}\)  . Therefore, we get
\(\lim_{θ \to 0} sin  θ
= \lim_{θ \rightarrow 0}\frac{\overline{PQ}}{\overline{OP}}
= \frac{0}{\overline{OQ}} \) [since, θ → 0° therefore, \(\overline{PQ}\) → 0].
= 0

Therefore sin 0° = 0

\(\lim_{θ \rightarrow 0} cos  θ
= \lim_{θ \rightarrow 0}\frac{\overline{OQ}}{\overline{OP}}
= \frac{\overline{OQ}}{\overline{OQ}} \), [since, θ → 0° therefore, \(\overline{OP}\) → \(\overline{OQ}\)].
= 1

Therefore cos 0° = 1

\(\lim_{θ \rightarrow 0} tan  θ
= \lim_{θ \rightarrow 0}\frac{\overline{PQ}}{\overline{OQ}}
= \frac{0}{\overline{OQ}} \) [since, θ → 0° therefore, \(\overline{PQ}\) → 0].
= 0

Therefore tan 0° = 0

Thus,
csc 0° = \(\frac{1}{sin  0°}
= \frac{1}{0} \), [since, sin 0° = 0] 
= undefined

Therefore csc 0° = undefined


sec 0° = \(\frac{1}{cos  0°}
= \frac{1}{1} \), [since, cos 0° = 1] 
= 1

Therefore sec 0° = 1


cot 0° = \(\frac{1}{tan  0°}
= \frac{1}{0} \), [since, tan 0° = 0] 
= undefined

Therefore cot 0° = undefined

Trigonometrical Ratios of 0 degree are commonly called standard angles and the trigonometrical ratios of these angles are frequently used to solve particular angles.

 Trigonometric Functions







11 and 12 Grade Math

From Trigonometrical Ratios of 0° to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Word Problems on Area and Perimeter | Free Worksheet with Answers

    Jul 26, 24 04:58 PM

    word problems on area and perimeter

    Read More

  2. Worksheet on Perimeter | Perimeter of Squares and Rectangle | Answers

    Jul 26, 24 04:37 PM

    Most and Least Perimeter
    Practice the questions given in the worksheet on perimeter. The questions are based on finding the perimeter of the triangle, perimeter of the square, perimeter of rectangle and word problems. I. Find…

    Read More

  3. Perimeter and Area of Irregular Figures | Solved Example Problems

    Jul 26, 24 02:20 PM

    Perimeter of Irregular Figures
    Here we will get the ideas how to solve the problems on finding the perimeter and area of irregular figures. The figure PQRSTU is a hexagon. PS is a diagonal and QY, RO, TX and UZ are the respective d…

    Read More

  4. Perimeter and Area of Plane Figures | Definition of Perimeter and Area

    Jul 26, 24 11:50 AM

    Perimeter of a Triangle
    A plane figure is made of line segments or arcs of curves in a plane. It is a closed figure if the figure begins and ends at the same point. We are familiar with plane figures like squares, rectangles…

    Read More

  5. 5th Grade Math Problems | Table of Contents | Worksheets |Free Answers

    Jul 26, 24 01:35 AM

    In 5th grade math problems you will get all types of examples on different topics along with the solutions. Keeping in mind the mental level of child in Grade 5, every efforts has been made to introdu…

    Read More