Trigonometrical Ratios of 0°

How to find the Trigonometrical Ratios of 0°?

Let a rotating line \(\overrightarrow{OX}\) rotates about O in the anti clockwise sense and starting from its initial position \(\overrightarrow{OX}\) traces out ∠XOY = θ where θ is very small.

Trigonometrical Ratios of 0°

Take a point P on \(\overrightarrow{OY}\)  and draw \(\overline{PQ}\) perpendicular to \(\overrightarrow{OX}\)  .

Now according to the definition of trigonometric ratio we get,
sin θ = \(\frac{\overline{PQ}}{\overline{OP}}\);
cos θ = \(\frac{\overline{OQ}}{\overline{OP}}\) and
tan θ = \(\frac{\overline{PQ}}{\overline{OQ}}\)           

When θ is slowly decreases and finally tends to zero then,
(a) \(\overline{PQ}\) slowly decreases and finally tends to zero and

(b) the numerical difference between \(\overline{OP}\)  and \(\overline{OQ}\)  becomes very small and finally tends to zero.

Hence, in the Limit when θ → 00 then \(\overline{PQ}\) → 0 and \(\overline{OP}\)   → \(\overline{OQ}\)  . Therefore, we get
\(\lim_{θ \to 0} sin  θ
= \lim_{θ \rightarrow 0}\frac{\overline{PQ}}{\overline{OP}}
= \frac{0}{\overline{OQ}} \) [since, θ → 0° therefore, \(\overline{PQ}\) → 0].
= 0

Therefore sin 0° = 0

\(\lim_{θ \rightarrow 0} cos  θ
= \lim_{θ \rightarrow 0}\frac{\overline{OQ}}{\overline{OP}}
= \frac{\overline{OQ}}{\overline{OQ}} \), [since, θ → 0° therefore, \(\overline{OP}\) → \(\overline{OQ}\)].
= 1

Therefore cos 0° = 1

\(\lim_{θ \rightarrow 0} tan  θ
= \lim_{θ \rightarrow 0}\frac{\overline{PQ}}{\overline{OQ}}
= \frac{0}{\overline{OQ}} \) [since, θ → 0° therefore, \(\overline{PQ}\) → 0].
= 0

Therefore tan 0° = 0

Thus,
csc 0° = \(\frac{1}{sin  0°}
= \frac{1}{0} \), [since, sin 0° = 0] 
= undefined

Therefore csc 0° = undefined


sec 0° = \(\frac{1}{cos  0°}
= \frac{1}{1} \), [since, cos 0° = 1] 
= 1

Therefore sec 0° = 1


cot 0° = \(\frac{1}{tan  0°}
= \frac{1}{0} \), [since, tan 0° = 0] 
= undefined

Therefore cot 0° = undefined

Trigonometrical Ratios of 0 degree are commonly called standard angles and the trigonometrical ratios of these angles are frequently used to solve particular angles.

 Trigonometric Functions







11 and 12 Grade Math

From Trigonometrical Ratios of 0° to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Adding 1-Digit Number | Understand the Concept one Digit Number

    Sep 18, 24 03:29 PM

    Add by Counting Forward
    Understand the concept of adding 1-digit number with the help of objects as well as numbers.

    Read More

  2. Addition of Numbers using Number Line | Addition Rules on Number Line

    Sep 18, 24 02:47 PM

    Addition Using the Number Line
    Addition of numbers using number line will help us to learn how a number line can be used for addition. Addition of numbers can be well understood with the help of the number line.

    Read More

  3. Counting Before, After and Between Numbers up to 10 | Number Counting

    Sep 17, 24 01:47 AM

    Before After Between
    Counting before, after and between numbers up to 10 improves the child’s counting skills.

    Read More

  4. Worksheet on Three-digit Numbers | Write the Missing Numbers | Pattern

    Sep 17, 24 12:10 AM

    Reading 3-digit Numbers
    Practice the questions given in worksheet on three-digit numbers. The questions are based on writing the missing number in the correct order, patterns, 3-digit number in words, number names in figures…

    Read More

  5. Arranging Numbers | Ascending Order | Descending Order |Compare Digits

    Sep 16, 24 11:24 PM

    Arranging Numbers
    We know, while arranging numbers from the smallest number to the largest number, then the numbers are arranged in ascending order. Vice-versa while arranging numbers from the largest number to the sma…

    Read More