Trigonometrical Ratios of 60°

How to find the Trigonometrical Ratios of 60°?

Let a rotating line \(\overrightarrow{OX}\) rotates about O in the anti-clockwise sense and starting from its initial position \(\overrightarrow{OX}\) traces out ∠XOY = 60° is shown in the above picture.

Take a point P on \(\overrightarrow{OY}\) and draw \(\overline{PQ}\) perpendicular to \(\overrightarrow{OX}\).

Trigonometrical Ratios of 60°

Let a rotating line \(\overrightarrow{OX}\) rotates about O in the anti-clockwise sense and starting from its initial position \(\overrightarrow{OX}\) traces out ∠XOY = 60° is shown in the above picture.

Take a point P on \(\overrightarrow{OY}\) and draw \(\overline{PQ}\) perpendicular to \(\overrightarrow{OX}\).

Now, take a point R on \(\overrightarrow{OX}\) such that \(\overline{OQ}\) = \(\overline{QR}\)  and join \(\overline{PR}\).

From △OPQ and △PQR we get,

\(\overline{OQ}\)  = \(\overline{QR}\),

\(\overline{PQ}\) common

and ∠PQO = ∠PQR (both are right angles)

Thus, the triangles are congruent.

Therefore,  ∠PRO = ∠POQ = 60°

Therefore, ∠OPR

= 180°  - ∠POQ - ∠PRO

= 180°  - 60° - 60°

=  60°

Therefore, the △POR is equilateral triangle

Let, OP = OR = 2a;

Thus, OQ = a.

Now, from pythagoras theorem we get,

OQ2 + PQ2 = OP2

⇒ a2 + PQ2 = (2a)2

⇒ PQ2 = 4a2 – a2

⇒ PQ2 = 3a2

Taking square roots on both the sides we get,

PQ = √3a (since, PQ > 0)

Therefore, from the right angled triangle POQ we get,
sin 60° = \(\frac{\overline{PQ}}{\overline{OP}} = \frac{\sqrt{3} a}{2a} = \frac{\sqrt{3}}{2}\);
cos 60° = \(\frac{\overline{OQ}}{\overline{OP}} = \frac{a}{2a} = \frac{1}{2}\)
And tan 60° = \(\frac{\overline{PQ}}{\overline{OQ}} = \frac{\sqrt{3} a}{a} = \sqrt{3}\)
Therefore, csc 60° = \(\frac{1}{sin  60°} = \frac{2}{\sqrt{3}} = \frac{2 \sqrt{3}}{3}\)
sec 60° = \(\frac{1}{cos  60°} \)= 2
And cot 60° =  \(\frac{1}{tan  60°} = \frac{1}{\sqrt{3}} = \frac{ \sqrt{3}}{3}\)


Trigonometrical Ratios of 60° are commonly called standard angles and the trigonometrical ratios of these angles are frequently used to solve particular angles.

 Trigonometric Functions





11 and 12 Grade Math

From Trigonometrical Ratios of 60° to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Word Problems on Area and Perimeter | Free Worksheet with Answers

    Jul 26, 24 04:58 PM

    word problems on area and perimeter

    Read More

  2. Worksheet on Perimeter | Perimeter of Squares and Rectangle | Answers

    Jul 26, 24 04:37 PM

    Most and Least Perimeter
    Practice the questions given in the worksheet on perimeter. The questions are based on finding the perimeter of the triangle, perimeter of the square, perimeter of rectangle and word problems. I. Find…

    Read More

  3. Perimeter and Area of Irregular Figures | Solved Example Problems

    Jul 26, 24 02:20 PM

    Perimeter of Irregular Figures
    Here we will get the ideas how to solve the problems on finding the perimeter and area of irregular figures. The figure PQRSTU is a hexagon. PS is a diagonal and QY, RO, TX and UZ are the respective d…

    Read More

  4. Perimeter and Area of Plane Figures | Definition of Perimeter and Area

    Jul 26, 24 11:50 AM

    Perimeter of a Triangle
    A plane figure is made of line segments or arcs of curves in a plane. It is a closed figure if the figure begins and ends at the same point. We are familiar with plane figures like squares, rectangles…

    Read More

  5. 5th Grade Math Problems | Table of Contents | Worksheets |Free Answers

    Jul 26, 24 01:35 AM

    In 5th grade math problems you will get all types of examples on different topics along with the solutions. Keeping in mind the mental level of child in Grade 5, every efforts has been made to introdu…

    Read More