Trigonometrical Ratios of 60°

How to find the Trigonometrical Ratios of 60°?

Let a rotating line \(\overrightarrow{OX}\) rotates about O in the anti-clockwise sense and starting from its initial position \(\overrightarrow{OX}\) traces out ∠XOY = 60° is shown in the above picture.

Take a point P on \(\overrightarrow{OY}\) and draw \(\overline{PQ}\) perpendicular to \(\overrightarrow{OX}\).

Trigonometrical Ratios of 60°

Let a rotating line \(\overrightarrow{OX}\) rotates about O in the anti-clockwise sense and starting from its initial position \(\overrightarrow{OX}\) traces out ∠XOY = 60° is shown in the above picture.

Take a point P on \(\overrightarrow{OY}\) and draw \(\overline{PQ}\) perpendicular to \(\overrightarrow{OX}\).

Now, take a point R on \(\overrightarrow{OX}\) such that \(\overline{OQ}\) = \(\overline{QR}\)  and join \(\overline{PR}\).

From △OPQ and △PQR we get,

\(\overline{OQ}\)  = \(\overline{QR}\),

\(\overline{PQ}\) common

and ∠PQO = ∠PQR (both are right angles)

Thus, the triangles are congruent.

Therefore,  ∠PRO = ∠POQ = 60°

Therefore, ∠OPR

= 180°  - ∠POQ - ∠PRO

= 180°  - 60° - 60°

=  60°

Therefore, the △POR is equilateral triangle

Let, OP = OR = 2a;

Thus, OQ = a.

Now, from pythagoras theorem we get,

OQ2 + PQ2 = OP2

⇒ a2 + PQ2 = (2a)2

⇒ PQ2 = 4a2 – a2

⇒ PQ2 = 3a2

Taking square roots on both the sides we get,

PQ = √3a (since, PQ > 0)

Therefore, from the right angled triangle POQ we get,
sin 60° = \(\frac{\overline{PQ}}{\overline{OP}} = \frac{\sqrt{3} a}{2a} = \frac{\sqrt{3}}{2}\);
cos 60° = \(\frac{\overline{OQ}}{\overline{OP}} = \frac{a}{2a} = \frac{1}{2}\)
And tan 60° = \(\frac{\overline{PQ}}{\overline{OQ}} = \frac{\sqrt{3} a}{a} = \sqrt{3}\)
Therefore, csc 60° = \(\frac{1}{sin  60°} = \frac{2}{\sqrt{3}} = \frac{2 \sqrt{3}}{3}\)
sec 60° = \(\frac{1}{cos  60°} \)= 2
And cot 60° =  \(\frac{1}{tan  60°} = \frac{1}{\sqrt{3}} = \frac{ \sqrt{3}}{3}\)


Trigonometrical Ratios of 60° are commonly called standard angles and the trigonometrical ratios of these angles are frequently used to solve particular angles.

 Trigonometric Functions





11 and 12 Grade Math

From Trigonometrical Ratios of 60° to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Tangrams Math | Traditional Chinese Geometrical Puzzle | Triangles

    Apr 17, 24 01:53 PM

    Tangrams
    Tangram is a traditional Chinese geometrical puzzle with 7 pieces (1 parallelogram, 1 square and 5 triangles) that can be arranged to match any particular design. In the given figure, it consists of o…

    Read More

  2. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Apr 17, 24 01:32 PM

    Duration of Time
    We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton every evening. Yesterday, their game started at 5 : 15 p.m.

    Read More

  3. Worksheet on Third Grade Geometrical Shapes | Questions on Geometry

    Apr 16, 24 02:00 AM

    Worksheet on Geometrical Shapes
    Practice the math worksheet on third grade geometrical shapes. The questions will help the students to get prepared for the third grade geometry test. 1. Name the types of surfaces that you know. 2. W…

    Read More

  4. 4th Grade Mental Math on Factors and Multiples |Worksheet with Answers

    Apr 16, 24 01:15 AM

    In 4th grade mental math on factors and multiples students can practice different questions on prime numbers, properties of prime numbers, factors, properties of factors, even numbers, odd numbers, pr…

    Read More

  5. Worksheet on Factors and Multiples | Find the Missing Factors | Answer

    Apr 15, 24 11:30 PM

    Worksheet on Factors and Multiples
    Practice the questions given in the worksheet on factors and multiples. 1. Find out the even numbers. 27, 36, 48, 125, 360, 453, 518, 423, 54, 58, 917, 186, 423, 928, 358 2. Find out the odd numbers.

    Read More