Trigonometrical Ratios of (- θ)

What is the relation among all the trigonometrical ratios of (– θ)?

In trigonometrical ratios of angles (- θ) we will find the relation between all six trigonometrical ratios.

Let a rotating line OA rotates about O in the anti-clockwise direction. From initial position to ending position OA make an angle ∠XOA = θ.

Trigonometrical Ratios of (- θ)

Diagram 1

Trigonometrical Ratios of (- θ)

Diagram 2

Again a rotating line OA rotates about O in the clockwise direction and makes an angle ∠XOB having magnitude equal to ∠XOA.

Then we get, ∠XOB = - θ. Observe the diagram 1 and 4 to take a point C on OA and draw CD perpendicular to OX. Or we can also observe the diagram 2 and 3 where CD perpendicular to OX'. Let produce CD to intersect OB at E. Now, from the ∆ COD and ∆ EOD we get ∠COD = ∠EOD (same magnitude), ∠ODC = ∠ODE and OD is common.

Therefore, ∆ COD ≅ ∆ EOD (congruent)

Therefore,  according to the rules of trigonometric sign we get,

ED = - CD and OE = OC.

Again according to the definition of trigonometric ratios,

sin (- θ) = \(\frac{ED}{OE}\)

sin (- θ) = \(\frac{- CD}{OC}\), [ED = CD and OE = OC since, ∆ COD ≅ ∆ EOD]

sin (- θ) = - sin θ


again, cos (- θ) = \(\frac{OD}{OE}\)

cos (- θ) = \(\frac{OD}{OC}\), [OE = OC since, ∆ COD ≅ ∆ EOD]

cos (- θ) = cos θ


again, tan (- θ) = \(\frac{ED}{OD}\)

tan (- θ) = \(\frac{- CD}{OD}\), [ED = CD since, ∆ COD ≅ ∆ EOD]

tan (- θ) = -  tan θ.


similarly, csc (- θ) = \(\frac{1}{sin (- \Theta)}\)

csc (- θ) = \(\frac{1}{-  sin \Theta}\)

csc (- θ) = - csc θ.


again, sec (- θ) = \(\frac{1}{cos (- \Theta)}\)

sec (- θ) = \(\frac{1}{cos \Theta}\) 

sec (- θ) = sec θ.


And again, cot (- θ) = \(\frac{1}{tan (- \Theta)}\)

cot (- θ) = \(\frac{1}{-  tan \Theta}\)

cot (- θ) = - cot θ.


Solved example:

1. Find the value of sin (- 45)°.

Solution:

sin (- 45)° = - sin 45°; since we know sin (- θ) = - sin θ

               = \(\frac{-1}{√2}\)


2. Find the value of sec (- 60)°.

Solution:

sec (- 60)° = sec 60°; since we know sec (- θ) = sec θ

                = 2   


3. Find the value of cot (- 90)°.

Solution:

cot (- 90)° = - tan 90°; since we know cot (- θ) = - tan θ

                = 0

 Trigonometric Functions





11 and 12 Grade Math

From Trigonometrical Ratios of (- θ) to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 11, 24 09:08 AM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  2. Types of Lines |Straight Lines|Curved Lines|Horizontal Lines| Vertical

    Dec 09, 24 10:39 PM

    Types of Lines
    What are the different types of lines? There are two different kinds of lines. (i) Straight line and (ii) Curved line. There are three different types of straight lines. (i) Horizontal lines, (ii) Ver…

    Read More

  3. Points and Line Segment | Two Points in a Curved Surface | Curve Line

    Dec 09, 24 01:08 AM

    Curved Lines and Straight Line
    We will discuss here about points and line segment. We know when two lines meet we get a point. When two points on a plane surface are joined, a straight line segment is obtained.

    Read More

  4. Solid Shapes | Basic Geometric Shapes | Common Solid Figures | Plane

    Dec 08, 24 11:19 PM

    Solid Shapes
    We will discuss about basic solid shapes. We see a variety of solid objects in our surroundings. Solid objects have one or more shapes like the following. Match the objects with similar shape.

    Read More

  5. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Dec 07, 24 03:38 PM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More