Processing math: 100%

Subscribe to our YouTube channel for the latest videos, updates, and tips.


Trigonometrical Ratios of Complementary Angles

How to find the trigonometrical ratios of complementary angles?

If the sum of two angles is one right angle or 90°, then one angle is said to be complementary of the other. Thus, 25° and 65°; θ° and (90 - θ)° are complementary to each other.

Suppose a rotating line rotates about O in the anti-clockwise sense and starting from its initial position

Trigonometrical Ratios of Complementary Angles

OX traces out angle ∠XOY = θ, where θ is acute. 

Take a point P on OY  and draw ¯PQ  perpendicular to OX.  Let, ∠OPQ = α. Then, we have,

α + θ = 90°

or, α = 90° -  θ.

Therefore, θ and α are complementary to each other.

Now, by the definition of trigonometric ratio,

sin θ = ¯PQ¯OP; ………. (i)

cos θ = ¯OQ¯OP; ………. (ii)

tan θ = ¯PQ¯OQ ………. (iii)

And   sin α = ¯OQ¯OP; ………. (iv)

cos α = ¯PQ¯OP; ………. (v)

tan α = ¯OQ¯PQ  ….… (vi)


From (i) and (iv) we have,

sin α = cos θ   

or,  sin (90° -  θ) = cos θ;


From (ii) and (v) we have,

cos α = sin θ   

or, cos (90° -  θ) = sin θ;


From (iii) and (vi) we have,

And tan α = 1/tan θ

or, tan (90° - θ) = cot θ.


Similarly, csc (90° - θ) = sec θ;

sec (90° - θ) = csc θ

and cot (90° - θ) = tan θ.


Therefore,

Sine of any angle    = cosine of its complementary angle;

Cosine of any angle = sine of its complementary angle;

Tangent of any angle = cotangent of its complementary angle.


Corollary:

Complementary Angles: Two angles are said to be complementary if their sum is 90°. Thus θ and (90° - θ) are complementary angles.

(i) sin (90° -  θ) = cos θ

(iii) tan (90° -  θ) = cot θ

(v) sec (90° -  θ) = csc θ

(ii) cos (90° -  θ) = sin θ

(iv) cot (90° -  θ) = tan θ

(vi) csc (90° -  θ)  = sec θ

We know there are six trigonometrical ratios in trigonometry. The above explanation will help us to find the trigonometrical ratios of complementary angles.


Worked-out problems on trigonometrical ratios of complementary angles:

1. Without using trigonometric tables, evaluate tan65°cot25°

Solution:

tan65°cot25°

= tan65°cot(90°65°)

tan65°tan65°, [Since cot (90° -  θ) = tan θ]

= 1


2. Without using trigonometric tables, evaluate sin 35° sin 55° - cos 35° cos 55°

Solution:

sin 35° sin 55° - cos 35° cos 55°

= sin 35° sin (90° - 35°) - cos 35° cos (90° - 35°),

= sin 35° cos 35° - cos 35° sin 35°,

                                      [Since sin (90° -  θ) = cos θ and cos (90° -  θ) = sin θ]

= sin 35° cos 35° - sin 35° cos 35°

= 0


3.  If sec 5θ = csc (θ - 36°), where 5θ is an acute angle, find the value of θ.

Solution:

    sec 5θ = csc (θ - 36°)

⇒ csc (90° - 5θ) = csc (θ - 36°), [Since sec θ = csc (90° -  θ)]

⇒ (90° - 5θ) = (θ - 36°)

⇒ -5θ - θ = -36° - 90°

⇒ -6θ = -126°

⇒ θ = 21°, [Dividing both sides by -6]

Therefore, θ = 21°


4. Using trigonometrical ratios of complementary angles prove that tan 1° tan 2° tan 3° ......... tan 89° = 1

Solution:

   tan 1° tan 2° tan 3° ...... tan 89°

= tan 1° tan 2° ...... tan 44° tan 45° tan 46° ...... tan 88° tan 89°

= (tan 1° ∙ tan 89°) (tan 2° ∙ tan 88°) ...... (tan 44° ∙ tan 46°) ∙ tan 45°

= {tan 1° ∙ tan (90° - 1°)} ∙ {tan 2° ∙ (tan 90° - 2°)} ...... {tan 44° ∙ tan (90° - 44°)} ∙ tan 45°

= (tan 1° ∙ cot 1°)(tan 2° ∙ cot 2°) ...... (tan 44° ∙ cot 44°) ∙ tan 45°, [Since tan (90° - θ) = cot θ]

= (1)(1) ...... (1) ∙ 1, [since tan θ ∙ cot θ = 1 and tan 45° = 1]

= 1

Therefore, tan 1° tan 2° tan 3° ...... tan 89° = 1

 Trigonometric Functions






11 and 12 Grade Math

From Trigonometrical Ratios of Complementary Angles to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. How to Divide Decimals? | Dividing Decimals by Decimals | Examples

    May 06, 25 01:23 AM

    Dividing a Decimal by a Whole Number
    Dividing Decimals by Decimals I. Dividing a Decimal by a Whole Number: II. Dividing a Decimal by another Decimal: If the dividend and divisor are both decimal numbers, we multiply both the numbers by…

    Read More

  2. Multiplying Decimal by a Whole Number | Step-by-step Explanation|Video

    May 06, 25 12:01 AM

    Multiplying decimal by a whole number is just same like multiply as usual. How to multiply a decimal by a whole number? To multiply a decimal by a whole number follow the below steps

    Read More

  3. Word Problems on Decimals | Decimal Word Problems | Decimal Home Work

    May 05, 25 01:27 AM

    Word problems on decimals are solved here step by step. The product of two numbers is 42.63. If one number is 2.1, find the other. Solution: Product of two numbers = 42.63 One number = 2.1

    Read More

  4. Worksheet on Multiplying Decimals | Product of the Two Decimal Numbers

    May 05, 25 01:05 AM

    Practice the math questions given in the worksheet on multiplying decimals. Multiply the decimals to find the product of the two decimal numbers, same like multiplying whole numbers.

    Read More

  5. Multiplication of a Decimal by 10, 100, 1000 | Multiplying decimals

    May 05, 25 12:23 AM

    Multiplication of a Decimal by 10, 100, 1000
    The working rule of multiplication of a decimal by 10, 100, 1000, etc... are: When the multiplier is 10, 100 or 1000, we move the decimal point to the right by as many places as number of zeroes after…

    Read More