Proving Trigonometric Ratios

In proving trigonometric ratios we will learn how to proof the questions step-by-step using trigonometric identities.



1. If sin4x + sin2 x = 1 then proof that, cot4x + cot2 x = 1.

Solution:

Given, sin4x + sin2 x = 1

⇒ sin4x + sin2 x - sin2 x = 1 - sin2 x, [subtract sin2 x from both the sides]

⇒ sin4x = 1 - sin2 x

⇒ sin4x = cos2 x.



Now L.H.S. = cot4x + cot2 x

= cos4x/sin4x + cos2 x/sin2 x

= cos4x/cos2 x + sin4x/sin2 x, [since, sin4x = cos2 x and cos2 x = sin4x]

= 1 = R.H.S. [since we know, sin2 x + cos2 x = 1]

                                                                              (Proved)

 

2. If sin θ - cos θ = √2 cos θ then proof that sin θ + cos θ = √2 sin θ, where 0 < θ < π/2

Solution:

Given, sin θ - cos θ = √2 cos θ

⇒ (sin θ - cos θ)2 = (√2 cos θ)2, [squaring both the sides]

⇒ sin2 θ + cos2 θ - 2 sin θ cos θ = 2 cos2 θ

⇒ sin2 θ + cos2 θ - 2 sin θ cos θ - cos2 θ = 2 cos2 θ - cos2 θ, [subtract cos2 θ from both the sides]

⇒ sin2 θ - 2 sin θ cos θ = cos2 θ

⇒ sin2 θ - 2 sin θ cos θ + 2 sin θ cos θ = cos2 θ + 2 sin θ cos θ, [adding 2 sin θ cos θ on both the sides]

⇒ sin2 θ = cos2 θ + 2 sin θ cos θ

⇒ sin2 θ + sin2 ϴ = sin2 θ + cos2 θ + 2 sin θ cos θ, [adding sin2 θ on both the sides]

⇒ 2 sin2 θ = (sin θ + cos θ)2

⇒ (sin θ + cos θ)2 = 2 sin2 θ

Now taking square root on both the sides we get,

⇒ sin θ + cos θ = ± √2 sin θ

According to the question, 0 < θ < π/2, hence we neglect the negative vaue.

Therefore, sin θ + cos θ = √2 sin θ

                                                           (Proved)

The above explanation on proving trigonometric ratios will help us to solve different types of trigonometric problems.

 Trigonometric Functions







10th Grade Math

From Proving Trigonometric Ratios to HOME PAGE


New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.



Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?