Proving Trigonometric Ratios

In proving trigonometric ratios we will learn how to proof the questions step-by-step using trigonometric identities.

1. If sin4x + sin2 x = 1 then proof that, cot4x + cot2 x = 1.


Given, sin4x + sin2 x = 1

⇒ sin4x + sin2 x - sin2 x = 1 - sin2 x, [subtract sin2 x from both the sides]

⇒ sin4x = 1 - sin2 x

⇒ sin4x = cos2 x.

Now L.H.S. = cot4x + cot2 x

= cos4x/sin4x + cos2 x/sin2 x

= cos4x/cos2 x + sin4x/sin2 x, [since, sin4x = cos2 x and cos2 x = sin4x]

= 1 = R.H.S. [since we know, sin2 x + cos2 x = 1]



2. If sin θ - cos θ = √2 cos θ then proof that sin θ + cos θ = √2 sin θ, where 0 < θ < π/2


Given, sin θ - cos θ = √2 cos θ

⇒ (sin θ - cos θ)2 = (√2 cos θ)2, [squaring both the sides]

⇒ sin2 θ + cos2 θ - 2 sin θ cos θ = 2 cos2 θ

⇒ sin2 θ + cos2 θ - 2 sin θ cos θ - cos2 θ = 2 cos2 θ - cos2 θ, [subtract cos2 θ from both the sides]

⇒ sin2 θ - 2 sin θ cos θ = cos2 θ

⇒ sin2 θ - 2 sin θ cos θ + 2 sin θ cos θ = cos2 θ + 2 sin θ cos θ, [adding 2 sin θ cos θ on both the sides]

⇒ sin2 θ = cos2 θ + 2 sin θ cos θ

⇒ sin2 θ + sin2 ϴ = sin2 θ + cos2 θ + 2 sin θ cos θ, [adding sin2 θ on both the sides]

⇒ 2 sin2 θ = (sin θ + cos θ)2

⇒ (sin θ + cos θ)2 = 2 sin2 θ

Now taking square root on both the sides we get,

⇒ sin θ + cos θ = ± √2 sin θ

According to the question, 0 < θ < π/2, hence we neglect the negative vaue.

Therefore, sin θ + cos θ = √2 sin θ


The above explanation on proving trigonometric ratios will help us to solve different types of trigonometric problems.

 Trigonometric Functions

10th Grade Math

From Proving Trigonometric Ratios to HOME PAGE

New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

Share this page: What’s this?

Recent Articles

  1. Fraction in Lowest Terms |Reducing Fractions|Fraction in Simplest Form

    Feb 28, 24 04:07 PM

    Fraction 8/16
    There are two methods to reduce a given fraction to its simplest form, viz., H.C.F. Method and Prime Factorization Method. If numerator and denominator of a fraction have no common factor other than 1…

    Read More

  2. Equivalent Fractions | Fractions |Reduced to the Lowest Term |Examples

    Feb 28, 24 01:43 PM

    Equivalent Fractions
    The fractions having the same value are called equivalent fractions. Their numerator and denominator can be different but, they represent the same part of a whole. We can see the shade portion with re…

    Read More

  3. Fraction as a Part of Collection | Pictures of Fraction | Fractional

    Feb 27, 24 02:43 PM

    Pictures of Fraction
    How to find fraction as a part of collection? Let there be 14 rectangles forming a box or rectangle. Thus, it can be said that there is a collection of 14 rectangles, 2 rectangles in each row. If it i…

    Read More

  4. Fraction of a Whole Numbers | Fractional Number |Examples with Picture

    Feb 24, 24 04:11 PM

    A Collection of Apples
    Fraction of a whole numbers are explained here with 4 following examples. There are three shapes: (a) circle-shape (b) rectangle-shape and (c) square-shape. Each one is divided into 4 equal parts. One…

    Read More

  5. Identification of the Parts of a Fraction | Fractional Numbers | Parts

    Feb 24, 24 04:10 PM

    Fractional Parts
    We will discuss here about the identification of the parts of a fraction. We know fraction means part of something. Fraction tells us, into how many parts a whole has been

    Read More