Trigonometrical Identity

Definition of trigonometrical identity:

An equation which is true for all values of the variable involved is called an identity. An equation which involves trigonometric ratios of an angle and is true for all the values of the angle is called trigonometrical identities.

When the solutions of any trigonometric ratio problems represent the same expression in the L.H.S. and R.H.S. and the relation is satisfied for all the values of θ then such relation is called a trigonometrical identity.

Mutual relations among the trigonometrical ratios are generally used to establish the equality of such trigonometrical identities.


To solve different types of trignometrical identity follow the formula:

sin θ ∙ csc θ = 1   csc θ = 1/sin θ

cos θ ∙ sec θ = 1 sec θ = 1/cos θ 

 tan θ ∙ cot θ = 1  cot θ = 1/tan θ 

 tan θ = sin θ/cos θ                 

 cot θ = cos θ/sin θ

sin2 θ implies (sin θ)2
similarly, tan3 θ means (tan θ)3 etc.

sin2 θ + cos2 θ = 1

cos2 θ = 1 - sin2 θ
sin2 θ = 1 - cos2 θ

sec2 θ = 1 + tan2 θ
sec2 θ - tan2 θ = 1
tan2 θ = sec2 θ - 1

csc2 θ = 1 + cot2 θ
csc2 θ - 1 = cot2 θ
csc2 θ - cot2 θ = 1

The trigonometrical ratios of a positive acute angle θ are always non-negative and

(i) sin θ and cos θ can never be greater than 1;

(ii) sec θ and csc θ can never be less than 1;

(iii) tan θ and cot θ can have any value.


Worked-out problems on trigonometric identity:

1. Proof the identity:

tan2 θ – (1/cos2 θ) + 1 = 0

Solution:

L.H.S = tan2 θ – (1/cos2 θ) + 1

= tan2 θ - sec2 θ + 1 [since, 1/cos θ = sec θ]

= tan2 θ – (1 + tan2 θ) +1 [since, sec2 θ = 1 + tan2 θ]

= tan2 θ – 1 – tan2 θ + 1

= 0 = R.H.S. Proved


2. Verify that:

1/(sin θ + cos θ) + 1/(sin θ - cos θ) = 2 sin θ/(1 – 2 cos2 θ)

Solution:

L.H.S = 1/(sin θ + cos θ) + 1/(sin θ - cos θ)

= [(sin θ - cos θ) + (sin θ + cos θ)]/(sin θ + cos θ)(sin θ - cos θ)

= [sin θ - cos θ + sin θ + cos θ]/(sin2 θ - cos2 θ)

= 2 sin θ/[(1 - cos2 θ) - cos2 θ] [since, sin2 θ = 1 - cos2 θ]

= 2 sin θ/[1 - cos2 θ - cos2 θ]

= 2 sin θ/[1 – 2 cos2 θ] = R.H.S. Proved


3. Prove that:

sec2 θ + csc2 θ = sec2 θ ∙ csc2 θ

Solution:

L.H.S. = sec2 θ + csc2 θ

= 1/cos2 θ + 1/sin2 θ [since, sec θ = 1/cos θ and csc θ = 1/sin θ]

= (sin2 θ + cos2 θ)/(cos2 θ sin2 θ)

= 1/cos2 θ ∙ sin2 θ [since, sin2 θ + cos2 θ = 1]

= 1/cos2 θ ∙ 1/sin2 θ

= sec2 θ ∙ csc2 θ = R.H.S. Proved




More examples on trigonometrical identity are explained below. To proof the identities step-by-step follow the above trig formulas.

4. Prove the identity:

cos θ/(1 + sin θ) = (1 + cos θ - sin θ)/(1 + cos θ + sin θ)

Solution:

R. H. S. = (1 + cos θ - sin θ)/(1 + cos θ + sin θ)

= {(1 + cos θ - sin θ) (1 + cos θ + sin θ)}/{(1+ cos θ + sin θ) (1 + cos θ + sin θ)} [multiplying both numerator and denominator by (1 + cos θ + sin θ)]

= {(1 + cos θ)2 - sin2 θ}/(1 + cos θ + sin θ)2

= (1 + cos2 θ + 2 cos θ - sin2 θ)/{(1 + cos θ)2 + 2 ∙ (1 + cos θ) sin θ + sin2 θ}

= (cos2 θ + 2 cos θ + 1 - sin2 θ)/{1 + cos2 θ + 2 cos θ + 2 ∙ (1 + cos θ) ∙ sin θ + sin2 θ}

= (cos2 θ + 2 cos θ + cos2 θ)/{2 + 2 cos θ + 2 ∙ (1 + cos θ) ∙ sin θ} [since, sin2 θ + cos2 θ = 1 and 1 - sin2 θ = cos2 θ]

= {2 cos θ (1 + cos θ)}/{2 (1 + cos θ)(1 + sin θ)}

= cos θ/(1 + sin θ) = L.H.S. Proved


5. Verify the trigonometrical identity:

(cot θ + csc θ – 1)/(cot θ - csc θ + 1) = (1 + cos θ)/sin θ

L.H.S. = (cot θ + csc θ – 1)/(cot θ - csc θ + 1)

= {cot θ + csc θ - (csc2 θ - cot2 θ)}/(cot θ - csc θ + 1)

[csc2 θ = 1 + cot2 θ ⇒ csc2 θ - cot2 θ = 1]

= {(cot θ + csc θ) - (csc θ + cot θ) (csc θ - cot θ)}/(cot θ - csc θ + 1)

= {(cot θ + csc θ) (1 - csc θ + cot θ)}/ (1 - csc θ + cot θ)

= cot θ + csc θ

= (cos θ/sin θ) + (1/sin θ)

= (1 + cos θ)/sin θ = R.H.S. Proved

Trigonometric Functions


10th Grade Math

From Trigonometrical Identity to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Word Problems on Area and Perimeter | Free Worksheet with Answers

    Jul 26, 24 04:58 PM

    word problems on area and perimeter

    Read More

  2. Worksheet on Perimeter | Perimeter of Squares and Rectangle | Answers

    Jul 26, 24 04:37 PM

    Most and Least Perimeter
    Practice the questions given in the worksheet on perimeter. The questions are based on finding the perimeter of the triangle, perimeter of the square, perimeter of rectangle and word problems. I. Find…

    Read More

  3. Perimeter and Area of Irregular Figures | Solved Example Problems

    Jul 26, 24 02:20 PM

    Perimeter of Irregular Figures
    Here we will get the ideas how to solve the problems on finding the perimeter and area of irregular figures. The figure PQRSTU is a hexagon. PS is a diagonal and QY, RO, TX and UZ are the respective d…

    Read More

  4. Perimeter and Area of Plane Figures | Definition of Perimeter and Area

    Jul 26, 24 11:50 AM

    Perimeter of a Triangle
    A plane figure is made of line segments or arcs of curves in a plane. It is a closed figure if the figure begins and ends at the same point. We are familiar with plane figures like squares, rectangles…

    Read More

  5. 5th Grade Math Problems | Table of Contents | Worksheets |Free Answers

    Jul 26, 24 01:35 AM

    In 5th grade math problems you will get all types of examples on different topics along with the solutions. Keeping in mind the mental level of child in Grade 5, every efforts has been made to introdu…

    Read More