Trigonometric Ratios of an Angle

We will learn how to find the values of trigonometric ratios of an angle. The questions are related to find the values of trigonometric functions of a real number x (i.e., sin x, cos x, tan x, etc.) at any values of x.

1. Find the values of cos (\(\frac{-11\Pi}{3}\))

Solution:

cos (\(\frac{-11\Pi}{3}\)) = cos (\(\frac{11\Pi}{3}\)), since cos (- θ) = cos θ

= cos (\(\frac{11 × 180°}{3}\))

= cos (\(\frac{1980°}{3}\))

= cos 660°

= cos (7 × 90° + 30°)

= sin 30°, [Since the angle 660° lies in the 4th quadrant and cos ratio is positive in this quadrant. Again, in  the angle 660° = 7 × 90° + 30°, multiplier of 90° is 7, which is an odd integer ; for this reason cos ratio has changed to sin.]

= 1/2

2. Find the values of cot (- 855°)

Solution:

cot (- 855°) = - cot 855° [since, cot (-θ) = - cot θ]

= - cot (9  × 90° + 45°)

= - (- tan 45°) [Since the angle 855° = 9  ×  90° + 45° lies in the second quadrant and only sin and csc ratios are positive in the second quadrant, thus cot ratio has become negative.  Again, in 855° = 9 x 90° + 45°, the number 9 i.e., an odd integer appears as a multiplier of 90°; for this reason cot ratio has changed to tan.]

= tan 45°

= 1.

 

3. Find the values of csc (-1650°)

Solution:

csc (-1650°) =  - csc 1650°, [since,  csc (-θ) = - csc θ]

= - csc (18 × 90° + 30°)

= - (- csc 30°), [Since, the angle 1650° lies in the 3th quadrant and csc ratio is negative in this quadrant. Again, in 1650° = 18 × 90° + 30°, multiplier of 90° is 18, which is an even integer; for this reason csc ratio remains unaltered.]

= csc 30°

= 2

 

4. If sin 49° = 3/4, find the value of sin 581°.                              

Solution:

sin 581° = sin (7 × 90° - 49°)

= - cos 49°, [Since the angle 581° = 7 × 90° - 49° lies in the 3rd quadrant and only tan and cot ratios are positive in the 3rd quadrant, thus sin ratio has become negative.  Again, in 581° = 7 × 90° - 49°, the number 7 i.e., an odd integer appears as a multiplier of 90°; for this reason sin ratio has changed to cos.]

= - √(1- sin\(^{2}\) 49°)

= - \(\sqrt{1 - (\frac{3}{4})^{2}}\)

= = - \(\sqrt{1 - \frac{9}{16}}\)

= - \(\sqrt{\frac{16 - 9}{16}}\), [since,  sin 49° = ¾]

= \(\frac{√7}{4}\)

 Trigonometric Functions





11 and 12 Grade Math

From Trigonometric Ratios of an Angle to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Decimal Place Value Chart |Tenths Place |Hundredths Place |Thousandths

    Jul 19, 24 03:26 PM

    Decimal place value chart
    Decimal place value chart are discussed here: The first place after the decimal is got by dividing the number by 10; it is called the tenths place.

    Read More

  2. Definition of Decimal Numbers | Decimal Part | Decimal Point |Examples

    Jul 19, 24 11:13 AM

    Decimal Numbers
    Definition of decimal numbers: We have learnt that the decimals are an extension of our number system. We also know that decimals can be considered as fractions whose denominators are 10, 100, 1000

    Read More

  3. Addition and Subtraction of Fractions | Solved Examples | Worksheet

    Jul 19, 24 02:00 AM

    Addition and subtraction of fractions are discussed here with examples. To add or subtract two or more fractions, proceed as under: (i) Convert the mixed fractions (if any.) or natural numbers

    Read More

  4. Fractions in Descending Order |Arranging Fractions an Descending Order

    Jul 19, 24 02:00 AM

    We will discuss here how to arrange the fractions in descending order. Solved examples for arranging in descending order: 1. Arrange the following fractions 5/6, 7/10, 11/20 in descending order. First…

    Read More

  5. Fractions in Ascending Order | Arranging Fractions | Worksheet |Answer

    Jul 19, 24 01:59 AM

    Comparison Fractions
    We will discuss here how to arrange the fractions in ascending order. Solved examples for arranging in ascending order: 1. Arrange the following fractions 5/6, 8/9, 2/3 in ascending order. First we fi…

    Read More