Trigonometrical Ratios of (180° - θ)

What are the relations among all the trigonometrical ratios of (180° - θ)?

In trigonometrical ratios of angles (180° - θ) we will find the relation between all six trigonometrical ratios.

 We know that,

sin (90° + θ) = cos θ

cos (90° + θ) = - sin θ

tan (90° + θ) = - cot θ

csc (90° + θ) = sec θ

sec ( 90° + θ) = - csc θ

cot ( 90° + θ) = - tan θ

and

sin (90° - θ) = cos θ

cos (90° - θ) = sin θ

tan (90° - θ) = cot θ

csc (90° - θ) = sec θ

sec (90° - θ) = csc θ

cot (90° - θ) = tan θ

Using the above proved results we will prove all six trigonometrical ratios of (180° - θ).

sin (180° - θ) = sin (90° + 90° - θ)

                   = sin [90° + (90° - θ)]

                   = cos (90° - θ), [since sin (90° + θ) = cos θ]

Therefore, sin (180° - θ) = sin θ, [since cos (90° - θ) = sin θ]

 

cos (180° - θ) = cos (90° + 90° - θ)

                    = cos [90° + (90° - θ)]

                    = - sin (90° - θ), [since cos (90° + θ) = -sin θ]

Therefore, cos (180° - θ) = - cos θ, [since sin (90° - θ) = cos θ]

 

tan (180° - θ) = cos (90° + 90° - θ)

                    = tan [90° + (90° - θ)]

                    = - cot (90° - θ), [since tan (90° + θ) = -cot θ]

Therefore, tan (180° - θ) = - tan θ, [since cot (90° - θ) = tan θ]


csc (180° - θ) = \(\frac{1}{sin (180° - \Theta)}\)

                    = \(\frac{1}{sin  \Theta}\), [since sin (180° - θ) = sin θ]

Therefore, csc (180° - θ) = csc θ;


sec (180° - θ) = \(\frac{1}{cos (180° - \Theta)}\)

                    = \(\frac{1}{- cos  \Theta}\), [since cos (180° - θ) = - cos θ]

Therefore, sec (180° - θ) = - sec θ

and

cot (180° - θ) = \(\frac{1}{tan (180° - \Theta)}\)

                    = \(\frac{1}{- tan  \Theta}\), [since tan (180° - θ) = - tan θ]

Therefore, cot (180° - θ) =  - cot θ.


Solved examples:

1. Find the value of sec 150°.

Solution:

sec 150° = sec (180 - 30)°

            = - sec 30°; since we know, sec (180° - θ) = - sec θ

            = - \(\frac{2}{√3}\)


2. Find the value of tan 120°.

Solution:

tan 120° = tan (180 - 60)°

            = - tan 60°; since we know, tan (180° - θ) = - tan θ

            = - √3

 Trigonometric Functions





11 and 12 Grade Math

From Trigonometrical Ratios of (180° - θ) to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Multiplying 3-Digit Number by 1-Digit Number | Three-Digit Multiplicat

    Jan 15, 25 01:54 PM

    Multiplying 3-Digit Number by 1-Digit Number
    Here we will learn multiplying 3-digit number by 1-digit number. In two different ways we will learn to multiply a two-digit number by a one-digit number. 1. Multiply 201 by 3 Step I: Arrange the numb…

    Read More

  2. Worksheet on Basic Multiplication Facts | Repeated Addition Fact

    Jan 15, 25 12:40 PM

    Worksheet on Basic Multiplication Facts
    Practice some known facts given in the worksheet on basic multiplication facts. The questions are based on the multiplication fact and repeated addition fact. 1. Write the multiplication fact for each

    Read More

  3. Worksheet on Facts about Multiplication | Multiplication Sum | Answers

    Jan 15, 25 01:24 AM

    Facts about Multiplication Work
    Practice the worksheet on facts about multiplication. We know in multiplication, the number being multiplied is called the multiplicand and the number by which it is being multiplied is called the mul…

    Read More

  4. Facts about Multiplication | Multiplicand | Multiplier | Product

    Jan 15, 25 01:03 AM

    We have learnt multiplication of numbers with 2digit multiplier. Now, we will learn more. Let us know some facts about multiplication. 1. In multiplication, the number being multiplied is called the m…

    Read More

  5. Basic Multiplication Facts | Repeated Addition |Multiplication Process

    Jan 15, 25 12:23 AM

    Understanding Multiplication
    Some basic multiplication facts are needed to follow for multiplying numbers. The repeated addition of the same number is expressed by multiplication in short.

    Read More