Problems on Signs of Trigonometrical Ratios

We will learn how to solve various type of problems on signs of trigonometrical ratios of any angles.

1. For what real values of x is the equation 2 cos θ = x + 1/x possible?

Solution:

Given, 2 cos θ = x + 1/x

⇒ x\(^{2}\) - 2 cos θ ∙ x + 1 = 0, which is a quadratic in x. As x is real, distinct ≥ 0

⇒ (- 2 cos θ)\(^{2}\) - 4 ∙ 1 ∙ 1 ≥ 0

⇒ cos\(^{2}\) θ ≥ 1 but cos^2 θ ≤ 1

⇒ cos\(^{2}\) θ = 1

⇒ cos θ = 1, 1

Case I: When cos θ = 1, we get,

 x\(^{2}\) - 2x + 1 =0

⇒ x = 1

Case II: When cos θ = -1, we get,

x\(^{2}\) + 2x + 1 =0

⇒ x = -1.

Hence the values of x are 1 and -1.

 

2.  Solve sin θ + √3cos θ = 1, (0 < 0 < 360°).

Solution:

sin θ + √3cos θ = 1                       

⇒ √3cos θ = 1- sin θ  

⇒  (√3cos θ)\(^{2}\) = (1- sin θ)\(^{2}\)

⇒ 3cos\(^{2}\) θ = 1 - 2sin θ + sin\(^{2}\) θ

⇒ 3(1 - sin\(^{2}\) θ) - 1 + 2sin θ - sin\(^{2}\) θ = 0

⇒ 2 sin\(^{2}\) θ - sin θ - 1 = 0

⇒ 2 sin\(^{2}\) θ - 2 sin θ + sin θ - 1 = 0

⇒ (sin θ - 1)(2 sin θ +1  ) =0

Therefore, either sin θ - 1 = 0 or, 2 sin θ + 1 =0

If sin θ - 1= 0 then

sin θ = 1 = sin 90°                               

Therefore, θ = 90°

Again, 2 sin θ + 1 =0 gives, sin θ = -1/2

Now, since sin θ is negative, hence θ lies either in the third or in the fourth quadrant.

Since sin θ = -1/2 = - sin 30° = sin (180° + 30°) = sin 210°

and sin θ = - 1/2 = - sin 30° = sin (360° - 30°) = sin 330°

Therefore, θ = 210° or 330°

Therefore, the required solutions in

0 < θ < 360°are: 90°, 210° and 330°.

 

3. If the 5 sin x = 3, find the value of \(\frac{sec x  -  tan x}{sec x  +  tan x}\).

Solution:

Given 5 sin x = 3

⇒ sin x = 3/5.

Now \(\frac{sec x - tan x}{sec x + tan x}\)

 = \(\frac{\frac{1}{cos x}  -  \frac{sin x}{cos x}}{\frac{1}{cos x} + \frac{sin x}{cos x}}\)

= \(\frac{1  -  sin x}{1  +  sin x}\)

= \(\frac{1  -  \frac{3}{5}}{1  +  \frac{3}{5}}\)

= \(\frac{\frac{2}{5}}{\frac{8}{5}}\)

= 2/8

= ¼.

4. A, B, C, D are the four angles, taken in order of a cyclic quadrilateral. Prove that, 
cot A + cot B + cot C + cot D = 0.

Solution:

We know that the opposite angles of a cyclic quadrilateral are supplementary.

Therefore, by question we have,

A + C= 180° or, C = 180° - A;

And B + D= 180° or, D = 180° - B.

Therefore, L. H. S. = cot A + cot B + cot C + cot D

= cot A + cot B + cot (180° - A) + cot (180° - B) 

= cot A + cot B - cot A - cot B

= 0. Proved.

 

5. If tan α = - 2, find the values of the remaining trigonometric function of α.

Solution:

Given tan α = - 2 which is - ve, therefore, α lies in second or fourth quadrant.

Also sec\(^{2}\) α = 1 + tan\(^{2}\) α = 1 + (-2)\(^{2}\) = 5

⇒ sec α = ± √5.

Two cases arise:

Case I. When α lies in the second quadrant, sec α is (-ve).

Therefore, sec α = -√5

⇒ cos α = - 1/√5

sin α = \(\frac{sin \alpha}{cos \alpha} \cdot cos \alpha\) = tan α cos α = -2 ∙ -\(\frac{1}{\sqrt{5}}\) = 2/√5

⇒ csc α = √5/2.

Also tan α = -2

⇒ cot α = ½.

Case II. When α lies in the fourth quadrant, sec α is + ve

Therefore, sec α = √5

⇒ cos α = 1/√5

sin α = \(\frac{sin \alpha}{cos \alpha} \cdot cos \alpha\) = tan α cos α = -2 ∙ \(\frac{1}{\sqrt{5}}\) = 2/√5

 

6. If tan (α - β) = 1, sec (α + β) = 2/√3, find positive magnitudes of α and β.

Solution: 

We have, tan (α - β) = 1 = tan 45°                          

Therefore, α - β = 45° ………………. (1)

Again, sec (α + β)= 2/√3                 

⇒ cos (α + β)= √3/2 

⇒ cos (α + β) = cos 30°  or, cos (360° - 30°) = cos 330°   

Therefore, α + β = 30°  or, 330° 

Since α and β are positive and α - β = 45°, hence we must have,

α + β = 330° …………….. (2)

(1)+ (2) gives, 2a = 375°            

⇒ α = {187\(\frac{1}{2}\)}°

and (2) - (1) gives,

2β = 285° or, β = {142\(\frac{1}{2}\)}°

 Trigonometric Functions






11 and 12 Grade Math

From Problems on Signs of Trigonometrical Ratios to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Word Problems on Area and Perimeter | Free Worksheet with Answers

    Jul 26, 24 04:58 PM

    word problems on area and perimeter

    Read More

  2. Worksheet on Perimeter | Perimeter of Squares and Rectangle | Answers

    Jul 26, 24 04:37 PM

    Most and Least Perimeter
    Practice the questions given in the worksheet on perimeter. The questions are based on finding the perimeter of the triangle, perimeter of the square, perimeter of rectangle and word problems. I. Find…

    Read More

  3. Perimeter and Area of Irregular Figures | Solved Example Problems

    Jul 26, 24 02:20 PM

    Perimeter of Irregular Figures
    Here we will get the ideas how to solve the problems on finding the perimeter and area of irregular figures. The figure PQRSTU is a hexagon. PS is a diagonal and QY, RO, TX and UZ are the respective d…

    Read More

  4. Perimeter and Area of Plane Figures | Definition of Perimeter and Area

    Jul 26, 24 11:50 AM

    Perimeter of a Triangle
    A plane figure is made of line segments or arcs of curves in a plane. It is a closed figure if the figure begins and ends at the same point. We are familiar with plane figures like squares, rectangles…

    Read More

  5. 5th Grade Math Problems | Table of Contents | Worksheets |Free Answers

    Jul 26, 24 01:35 AM

    In 5th grade math problems you will get all types of examples on different topics along with the solutions. Keeping in mind the mental level of child in Grade 5, every efforts has been made to introdu…

    Read More