Trigonometric Functions of any Angles

We will learn how to solve various type of problems on trigonometric functions of any angles.

1. Is the equation 2 sin\(^{2}\) θ - cos θ + 4 = 0 possible?

Solution:

2 sin\(^{2}\) θ – cos θ + 4 = 0

⇒ 2(1 - cos\(^{2}\) θ) - cos θ + 4 = 0

⇒ 2 - 2 cos\(^{2}\) θ - cos θ + 4 = 0

⇒ - 2 cos\(^{2}\) θ - cos θ + 6 = 0

⇒ 2 cos\(^{2}\) θ + cos θ - 6 = 0

⇒ 2 cos\(^{2}\) θ + 4 cos θ - 3 cos θ - 6 = 0

⇒ 2 cos θ (cos θ + 2) - 3 (cos θ + 2) = 0

⇒ (cos θ + 2) (2 cos θ - 3) = 0

⇒ (cos θ + 2) = 0 or (2 cos θ - 3) = 0

⇒ cos θ = - 2 or cos θ = 3/2, both of which are impossible as -1 ≤ cos θ ≤ 1.

Hence, the equation 2sin\(^{2}\) θ - cos θ + 4 = 0 is not possible.

2. Simplify the expression: \(\frac{sec  (270°  -  θ) sec  (90°  -  θ)  -  tan  (270° - θ) tan  (90°  +  θ)}{cot  θ  +  tan  (180°  +  θ)  +  tan  (90°  +  θ)  +  tan  (360°  -  θ)  +  cos  180°}\)

Solution:

First we will simplify the numerator {sec (270° - θ) sec (90° - θ) - tan (270° - θ) tan (90° + θ)};

= sec (3 ∙ 90° - θ) sec (90° - θ) - tan (3 ∙ 90° - θ) tan (90° + θ)

= - csc θ ∙ csc θ - cot θ (- cot θ)

= - csc\(^{2}\) θ + cot\(^{2}\) θ

= - (csc\(^{2}\) θ - cot\(^{2}\) θ)

= - 1

And, now we will simplify the denominator {cot θ + tan (180° + θ) + tan (90° + θ) + tan (360° - θ) + cos 180°};

= cot θ + tan (2 ∙ 90° + θ) + tan (90° + θ) + tan (4 ∙ 90° - θ) + cos (2 ∙ 90° - 0°)

= cot θ + tan θ - cot θ - tan θ - cos 0°

= - cos 0°

= 1

Therefore, the given expression = (-1)/(-1) = 1

3. If tan α = -4/3, find the value of (sin α + cos α).

Solution:

We know that, sec\(^{2}\) α = 1 + tan\(^{2}\) α and tan α = - 4/3

Therefore, sec\(^{2}\) α = 1 + (-4/3)\(^{2}\)

sec\(^{2}\) α = 1 + 16/9

sec\(^{2}\) α = 25/9

Therefore, sec α = ± 5/3

Therefore, cos α = ± 3/5

Again, sin\(^{2}\) α = 1 - cos\(^{2}\) α

sin\(^{2}\) α = 1 - (± 3/5)\(^{2}\); since, cos α = ± 3/5

sin\(^{2}\) α = 1 - (9/25)

sin\(^{2}\) α = 16/25

Therefore, sin α = ± 4/5

Now, tan α is negative; hence, α lies either in the second or in the fourth quadrant.

If α lies in the second quadrant then sin α is positive and cos α is negative.

Hence, we take, sin α = 4/5 and cos α = - 3/5

Therefore, sin α + cos α = 4/5 - 3/5 = 1/5

Again, if α lies in the fourth quadrant then sin α is negative and cos α is positive.

Hence, we take, sin α = -4/5 and cos α = 3/5

Therefore, sin α + cos α = - 4/5 + 3/5 = -1/5

Therefore, the required values of (sin α + cos α) = ± 1/5.

 Trigonometric Functions






11 and 12 Grade Math

From Trigonometric Functions of any Angles to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 5th Grade Least Common Factor (LCM) | Factorization & Division Method

    Mar 25, 25 02:39 AM

    L.C.M. of 20, 30, 36 by Division Method
    We already familiar with the least common multiple which is the smallest common multiple of the numbers. The least (lowest) common multiple of two or more numbers is exactly divisible by each of the g…

    Read More

  2. 5th Grade Highest Common Factor | HCF | GCD|Prime Factorization Method

    Mar 24, 25 11:58 PM

    Find the H.C.F. of 12, 36, 48
    The highest common factor (H.C.F.) of two or more numbers is the highest or greatest common number or divisor which divides each given number exactly. Hence, it is also called Greatest Common Divisor…

    Read More

  3. 5th Grade Factors and Multiples | Definitions | Solved Examples | Math

    Mar 23, 25 02:39 PM

    Prime Factor of 312
    Here we will discuss how factors and multiples are related to each other in math. A factor of a number is a divisor which divides the dividend exactly. A factor of a number which is a prime number is…

    Read More

  4. Adding 2-Digit Numbers | Add Two Two-Digit Numbers without Carrying

    Mar 23, 25 12:43 PM

    Adding 2-Digit Numbers Using an Abacus
    Here we will learn adding 2-digit numbers without regrouping and start working with easy numbers to get acquainted with the addition of two numbers.

    Read More

  5. Worksheet on 12 Times Table | Printable Multiplication Table | Video

    Mar 23, 25 10:28 AM

    worksheet on multiplication of 12 times table
    Worksheet on 12 times table can be printed out. Homeschoolers can also use these multiplication table sheets to practice at home.

    Read More