# Trig Ratios Proving Problems

In trig ratios proving problems we will learn how to proof the questions step-by-step using trigonometric identities.

1. If (1 + cos A)( 1 + cos B)( 1 + cos C) = (1 - cos A)( 1 - cos B)( 1 - cos C) then prove that each side = ± sin A sin B sin C.

Solution:  Let, (1 + cos A) (1 + cos B) (1 + cos C) = k         …. (i)

Therefore, according to the problem,

(1 - cos A) (1 - cos B) (1 - cos C) = k                         ….. (ii)

Now multiplying both sides of (i) and (ii) we get,

(1 + cos A)(1 + cos B)(1 + cos C)(1 - cos A)(1 - cos B)(1 - cos C) = k2

⇒ k2 = (1 - cos2 A) (1 - cos2 B) (1 - cos2 C)

⇒ k2 = sin2 A sin2 B sin2 C

k = ± sin A sin B sin C.

Therefore, each side of the given condition

= k = ± sin A sin B  sin C
Proved.

More solved examples on trig ratios proving problems.

2. If un = cosn θ + sinn θ then prove that, 2u6 - 3u4 + 1 = 0.

Solution:

Since, un = cosn θ + sinn θ

Therefore, u6 = cos6 θ + sin6 θ

⇒ u6 = (cos2 θ)3 + (sin2 θ)3

⇒ u6 = (cos2 θ + sin2 θ)3 - 3 cos2 θ ∙ sin2 θ (cos2 θ + sin2 θ)

⇒ u6 = 1 - 3cos2 θ sin2 θ and u4 = cos4 θ + sin4 θ

⇒ u4 = (cos2 θ)2 + (sin2 θ)2

⇒ u4 = (cos2 θ + sin2 θ)2 - 2 cos2 θ sin2 θ

⇒ u4 = 1 - 2 cos2 θ sin2 θ

Therefore,

2u6 - 3u4 + 1

= 2(1 - 3cos2 θ sin2 θ) - 3(1 - 2 cos2 θ sin2 θ) + 1

= 2 - 6 cos2 θ sin2 θ - 3 + 6 cos2 θ sin2 θ + 1

= 0.

Therefore, 2u6 - 3u4 + 1 = 0.

Proved.

3. If a sin θ - b cos θ = c then prove that, a cos θ + b sin θ = ± √(a2 + b2 - c2).

Solution:

Given: a sin θ - b cos θ = c

⇒ (a sin θ - b cos θ)2 = c2, [Squaring both sides]

⇒ a2 sin2 θ + b2 cos2 θ - 2ab sin θ cos θ = c2

⇒ - a2 sin2 θ - b2 cos2 θ + 2ab sin θ cos θ = - c2

⇒ a2 - a2 sin2 θ + b2 - b2 cos2 θ + 2ab sin θ cos θ = a2 + b2 - c2

⇒ a2(1 - sin2 θ) + b2(1 - cos2 θ) + 2ab sin θ cos θ = a2 + b2 - c2

⇒ a2 cos2 θ + b2 sin2 θ + 2 ∙ a cos θ ∙ b sin θ = a2 + b2 - c2

⇒ (a cos θ + b sin θ)2 = a2 + b2 - c2

Now taking square root on both the sides we get,

⇒ a cos θ + b sin θ = ± √(a2 + b2 - c2).

Proved.

The above three trig ratios proving problems will help us to solve more basic problems on T-ratio.

Problems on Trigonometric Ratios

Reciprocal Relations of Trigonometric Ratios

Trigonometrical Identity

Problems on Trigonometric Identities

Eliminate Theta between the equations

Trig Ratio Problems

Proving Trigonometric Ratios

Trig Ratios Proving Problems

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

## Recent Articles 1. ### Rupees and Paise | Paise Coins | Rupee Coins | Rupee Notes

Dec 04, 23 02:14 PM

Money consists of rupees and paise; we require money to purchase things. 100 paise make one rupee. List of paise and rupees in the shape of coins and notes:

2. ### Months of the Year | List of 12 Months of the Year |Jan, Feb, Mar, Apr

Dec 04, 23 01:50 PM

There are 12 months in a year. The months are January, February, march, April, May, June, July, August, September, October, November and December. The year begins with the January month. December is t…