Trig Ratios Proving Problems

In trig ratios proving problems we will learn how to proof the questions step-by-step using trigonometric identities.

1. If (1 + cos A)( 1 + cos B)( 1 + cos C) = (1 - cos A)( 1 - cos B)( 1 - cos C) then prove that each side = ± sin A sin B sin C.

Solution:  Let, (1 + cos A) (1 + cos B) (1 + cos C) = k         …. (i)

Therefore, according to the problem,

(1 - cos A) (1 - cos B) (1 - cos C) = k                         ….. (ii)

Now multiplying both sides of (i) and (ii) we get,

(1 + cos A)(1 + cos B)(1 + cos C)(1 - cos A)(1 - cos B)(1 - cos C) = k2

⇒ k2 = (1 - cos2 A) (1 - cos2 B) (1 - cos2 C)

⇒ k2 = sin2 A sin2 B sin2 C

 k = ± sin A sin B sin C.

Therefore, each side of the given condition

= k = ± sin A sin B  sin C 
                                           Proved.


More solved examples on trig ratios proving problems.

2. If un = cosn θ + sinn θ then prove that, 2u6 - 3u4 + 1 = 0.

Solution:

Since, un = cosn θ + sinn θ

Therefore, u6 = cos6 θ + sin6 θ

⇒ u6 = (cos2 θ)3 + (sin2 θ)3

⇒ u6 = (cos2 θ + sin2 θ)3 - 3 cos2 θ ∙ sin2 θ (cos2 θ + sin2 θ)

⇒ u6 = 1 - 3cos2 θ sin2 θ and u4 = cos4 θ + sin4 θ

⇒ u4 = (cos2 θ)2 + (sin2 θ)2

⇒ u4 = (cos2 θ + sin2 θ)2 - 2 cos2 θ sin2 θ

⇒ u4 = 1 - 2 cos2 θ sin2 θ

Therefore,

2u6 - 3u4 + 1

= 2(1 - 3cos2 θ sin2 θ) - 3(1 - 2 cos2 θ sin2 θ) + 1

= 2 - 6 cos2 θ sin2 θ - 3 + 6 cos2 θ sin2 θ + 1

= 0.

Therefore, 2u6 - 3u4 + 1 = 0.

                                           Proved.


3. If a sin θ - b cos θ = c then prove that, a cos θ + b sin θ = ± √(a2 + b2 - c2).

Solution:

Given: a sin θ - b cos θ = c

⇒ (a sin θ - b cos θ)2 = c2, [Squaring both sides]

⇒ a2 sin2 θ + b2 cos2 θ - 2ab sin θ cos θ = c2

⇒ - a2 sin2 θ - b2 cos2 θ + 2ab sin θ cos θ = - c2

⇒ a2 - a2 sin2 θ + b2 - b2 cos2 θ + 2ab sin θ cos θ = a2 + b2 - c2

⇒ a2(1 - sin2 θ) + b2(1 - cos2 θ) + 2ab sin θ cos θ = a2 + b2 - c2

⇒ a2 cos2 θ + b2 sin2 θ + 2 ∙ a cos θ ∙ b sin θ = a2 + b2 - c2

⇒ (a cos θ + b sin θ)2 = a2 + b2 - c2

Now taking square root on both the sides we get,

⇒ a cos θ + b sin θ = ± √(a2 + b2 - c2).

                                                      Proved.


The above three trig ratios proving problems will help us to solve more basic problems on T-ratio.

Basic Trigonometric Ratios 

Relations Between the Trigonometric Ratios

Problems on Trigonometric Ratios

Reciprocal Relations of Trigonometric Ratios

Trigonometrical Identity

Problems on Trigonometric Identities

Elimination of Trigonometric Ratios 

Eliminate Theta between the equations

Problems on Eliminate Theta 

Trig Ratio Problems

Proving Trigonometric Ratios

Trig Ratios Proving Problems

Verify Trigonometric Identities 






10th Grade Math

From Trig Ratios Proving Problems to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Patterns in Numbers | Patterns in Maths |Math Patterns|Series Patterns

    Dec 13, 24 08:43 AM

    Complete the Series Patterns
    We see so many patterns around us in our daily life. We know that a pattern is an arrangement of objects, colors, or numbers placed in a certain order. Some patterns neither grow nor reduce but only r…

    Read More

  2. Patterns in Math | Missing Number | Counting Numbers | Worksheets

    Dec 13, 24 12:31 AM

    Finding patterns in math is very important to understand the sequence in the series. We need to find the exact missing number that from the group of numbers. The counting numbers may be counting

    Read More

  3. Concept of Pattern | Similar Patterns in Mathematics | Similar Pattern

    Dec 12, 24 11:22 PM

    Patterns in Necklace
    Concept of pattern will help us to learn the basic number patterns and table patterns. Animals such as all cows, all lions, all dogs and all other animals have dissimilar features. All mangoes have si…

    Read More

  4. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 12, 24 10:31 PM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  5. Types of Lines |Straight Lines|Curved Lines|Horizontal Lines| Vertical

    Dec 09, 24 10:39 PM

    Types of Lines
    What are the different types of lines? There are two different kinds of lines. (i) Straight line and (ii) Curved line. There are three different types of straight lines. (i) Horizontal lines, (ii) Ver…

    Read More