Relations Between the
Trigonometric Ratios

Fundamental relations between the trigonometric ratios of an angle:

Trigonometric Ratios of an Angle

To know the relations between the trigonometric ratios from the above figure, we see;

sin θ = perpendicular/hypotenuse = MP/PO and

cosec θ = hypotenuse/perpendicular = PO/MP

It is clear that one is the reciprocal of the other.

So, sin θ = 1/cosec θ and

cosec θ = 1/sin θ ………. (a)

Again, cos θ = base/hypotenuse = OM/OP and

sec θ = hypotenuse/ base = OP/OM

One is reciprocal of the other.

That is, cos θ = 1/sec θ and sec θ = 1/cos θ ………. (b)

So, tan θ = perpendicular/base = MP/OM and cot θ = base/perpendicular = OM/MP

tan θ = 1/cot θ and cot θ = 1/tan θ ………. (c)

Moreover, sin θ/cos θ = (MP/OP) ÷ (OM/OP) = (MP/OP) × (OP/OM) = MP/OM = tan θ

Therefore, sin θ/cos θ = tan θ ………. (d)

and cos θ/sin θ = (OM/OP) ÷ (MP/OP) = (OM/OP) × (OP/MP) = OM/MP = cot θ

Therefore, cos θ/sin θ = cot θ ………. (e)

relations between the trigonometric ratios
Sin θ = PM/OP

Cos θ = OM/OP

Tan θ = PM/OM

Csc θ = OP/PM

Sec θ = OP/OM

Cot θ = OM/PM

Now from the right-angled triangle POM we get;

PM2 + OM2 = OP2 ……………. (i)

Dividing both sides by OP2 we get,

PM2/OP2 + OM2/OP2 = OP2/OP2

or, (PM/OP)2 + (OM/OP)2 = 1

or, sin2 θ + cos2 θ = 1

Again, dividing both sides of (i) by OM2

PM2/OM2 + OM2/OM2 = OP2/OM2

or, (PM/OM)2 + 1 = (OP/OM)2

or, tan2 θ + 1 = sec2 θ

Finally, dividing both of (i) by PM2 we get;

PM2/PM2 + OM2/PM2 = OP2/PM2

or, 1 + (OM/PM)2 = (OP/PM)2

or, 1 + cot2 θ = csc2 θ

Corollary 1: From the relation sin2 θ + cos2 θ = 1 we deduce that

(i) 1 - cos2 θ = sin2 θ and

(ii) 1 - sin2 θ = cos2 θ

Corollary 2: From the relation 1 + tan2 θ = sec2 θ we deduce that

(i) sec2 θ - 1 = tan2 θ and

(ii) sec2 θ - tan2 θ = 1

Corollary 3: From the relation 1 + cot2 θ = csc2 θ we deduce that

(i) csc2 θ - 1 = cot2 θ and

(ii) csc2 θ - cot2 θ = 1

This is how the ratios are related to show that one is the reciprocal of the other according to the relations between the trigonometric ratios.

Basic Trigonometric Ratios 

Relations Between the Trigonometric Ratios

Problems on Trigonometric Ratios

Reciprocal Relations of Trigonometric Ratios

Trigonometrical Identity

Problems on Trigonometric Identities

Elimination of Trigonometric Ratios 

Eliminate Theta between the equations

Problems on Eliminate Theta 

Trig Ratio Problems

Proving Trigonometric Ratios

Trig Ratios Proving Problems

Verify Trigonometric Identities 

10th Grade Math

From Relations Between the Trigonometric Ratios to HOME PAGE

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Subtracting Integers | Subtraction of Integers |Fundamental Operations

    Jun 13, 24 02:51 AM

    Subtracting integers is the second operations on integers, among the four fundamental operations on integers. Change the sign of the integer to be subtracted and then add.

    Read More

  2. Properties of Subtracting Integers | Subtraction of Integers |Examples

    Jun 13, 24 02:28 AM

    The properties of subtracting integers are explained here along with the examples. 1. The difference (subtraction) of any two integers is always an integer. Examples: (a) (+7) – (+4) = 7 - 4 = 3

    Read More

  3. Math Only Math | Learn Math Step-by-Step | Worksheet | Videos | Games

    Jun 13, 24 12:11 AM

    Presenting math-only-math to kids, students and children. Mathematical ideas have been explained in the simplest possible way. Here you will have plenty of math help and lots of fun while learning.

    Read More

  4. Addition of Integers | Adding Integers on a Number Line | Examples

    Jun 12, 24 01:11 PM

    Addition of Integers
    We will learn addition of integers using number line. We know that counting forward means addition. When we add positive integers, we move to the right on the number line. For example to add +2 and +4…

    Read More

  5. Worksheet on Adding Integers | Integers Worksheets | Answers |Addition

    Jun 11, 24 07:15 PM

    Worksheet on Adding Integers
    Practice the questions given in the worksheet on adding integers. We know that the sum of any two integers is always an integer. I. Add the following integers:

    Read More