Subscribe to our YouTube channel for the latest videos, updates, and tips.


Relations Between the
Trigonometric Ratios

Fundamental relations between the trigonometric ratios of an angle:

Trigonometric Ratios of an Angle

To know the relations between the trigonometric ratios from the above figure, we see;

sin θ = perpendicular/hypotenuse = MP/PO and

cosec θ = hypotenuse/perpendicular = PO/MP

It is clear that one is the reciprocal of the other.

So, sin θ = 1/cosec θ and

cosec θ = 1/sin θ ………. (a)

Again, cos θ = base/hypotenuse = OM/OP and

sec θ = hypotenuse/ base = OP/OM

One is reciprocal of the other.

That is, cos θ = 1/sec θ and sec θ = 1/cos θ ………. (b)

So, tan θ = perpendicular/base = MP/OM and cot θ = base/perpendicular = OM/MP

tan θ = 1/cot θ and cot θ = 1/tan θ ………. (c)

Moreover, sin θ/cos θ = (MP/OP) ÷ (OM/OP) = (MP/OP) × (OP/OM) = MP/OM = tan θ

Therefore, sin θ/cos θ = tan θ ………. (d)

and cos θ/sin θ = (OM/OP) ÷ (MP/OP) = (OM/OP) × (OP/MP) = OM/MP = cot θ

Therefore, cos θ/sin θ = cot θ ………. (e)

relations between the trigonometric ratios
Sin θ = PM/OP

Cos θ = OM/OP

Tan θ = PM/OM

Csc θ = OP/PM

Sec θ = OP/OM

Cot θ = OM/PM



Now from the right-angled triangle POM we get;

PM2 + OM2 = OP2 ……………. (i)

Dividing both sides by OP2 we get,

PM2/OP2 + OM2/OP2 = OP2/OP2

or, (PM/OP)2 + (OM/OP)2 = 1

or, sin2 θ + cos2 θ = 1

Again, dividing both sides of (i) by OM2

PM2/OM2 + OM2/OM2 = OP2/OM2

or, (PM/OM)2 + 1 = (OP/OM)2

or, tan2 θ + 1 = sec2 θ

Finally, dividing both of (i) by PM2 we get;

PM2/PM2 + OM2/PM2 = OP2/PM2

or, 1 + (OM/PM)2 = (OP/PM)2

or, 1 + cot2 θ = csc2 θ


Corollary 1: From the relation sin2 θ + cos2 θ = 1 we deduce that

(i) 1 - cos2 θ = sin2 θ and

(ii) 1 - sin2 θ = cos2 θ


Corollary 2: From the relation 1 + tan2 θ = sec2 θ we deduce that

(i) sec2 θ - 1 = tan2 θ and

(ii) sec2 θ - tan2 θ = 1


Corollary 3: From the relation 1 + cot2 θ = csc2 θ we deduce that

(i) csc2 θ - 1 = cot2 θ and

(ii) csc2 θ - cot2 θ = 1


This is how the ratios are related to show that one is the reciprocal of the other according to the relations between the trigonometric ratios.

Basic Trigonometric Ratios 

Relations Between the Trigonometric Ratios

Problems on Trigonometric Ratios

Reciprocal Relations of Trigonometric Ratios

Trigonometrical Identity

Problems on Trigonometric Identities

Elimination of Trigonometric Ratios 

Eliminate Theta between the equations

Problems on Eliminate Theta 

Trig Ratio Problems

Proving Trigonometric Ratios

Trig Ratios Proving Problems

Verify Trigonometric Identities 





10th Grade Math

From Relations Between the Trigonometric Ratios to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Expanded form of Decimal Fractions |How to Write a Decimal in Expanded

    May 07, 25 01:48 AM

    Expanded form of Decimal
    Decimal numbers can be expressed in expanded form using the place-value chart. In expanded form of decimal fractions we will learn how to read and write the decimal numbers. Note: When a decimal is mi…

    Read More

  2. Dividing Decimals Word Problems Worksheet | Answers |Decimals Division

    May 07, 25 01:33 AM

    Dividing Decimals Word Problems Worksheet
    In dividing decimals word problems worksheet we will get different types of problems on decimals division word problems, dividing a decimal by a whole number, dividing a decimals and dividing a decima…

    Read More

  3. How to Divide Decimals? | Dividing Decimals by Decimals | Examples

    May 06, 25 01:23 AM

    Dividing a Decimal by a Whole Number
    Dividing Decimals by Decimals I. Dividing a Decimal by a Whole Number: II. Dividing a Decimal by another Decimal: If the dividend and divisor are both decimal numbers, we multiply both the numbers by…

    Read More

  4. Multiplying Decimal by a Whole Number | Step-by-step Explanation|Video

    May 06, 25 12:01 AM

    Multiplying decimal by a whole number is just same like multiply as usual. How to multiply a decimal by a whole number? To multiply a decimal by a whole number follow the below steps

    Read More

  5. Word Problems on Decimals | Decimal Word Problems | Decimal Home Work

    May 05, 25 01:27 AM

    Word problems on decimals are solved here step by step. The product of two numbers is 42.63. If one number is 2.1, find the other. Solution: Product of two numbers = 42.63 One number = 2.1

    Read More