Relations Between the
Trigonometric Ratios

Fundamental relations between the trigonometric ratios of an angle:

Trigonometric Ratios of an Angle

To know the relations between the trigonometric ratios from the above figure, we see;

sin θ = perpendicular/hypotenuse = MP/PO and

cosec θ = hypotenuse/perpendicular = PO/MP

It is clear that one is the reciprocal of the other.

So, sin θ = 1/cosec θ and

cosec θ = 1/sin θ ………. (a)

Again, cos θ = base/hypotenuse = OM/OP and

sec θ = hypotenuse/ base = OP/OM

One is reciprocal of the other.

That is, cos θ = 1/sec θ and sec θ = 1/cos θ ………. (b)

So, tan θ = perpendicular/base = MP/OM and cot θ = base/perpendicular = OM/MP

tan θ = 1/cot θ and cot θ = 1/tan θ ………. (c)

Moreover, sin θ/cos θ = (MP/OP) ÷ (OM/OP) = (MP/OP) × (OP/OM) = MP/OM = tan θ

Therefore, sin θ/cos θ = tan θ ………. (d)

and cos θ/sin θ = (OM/OP) ÷ (MP/OP) = (OM/OP) × (OP/MP) = OM/MP = cot θ

Therefore, cos θ/sin θ = cot θ ………. (e)

relations between the trigonometric ratios
Sin θ = PM/OP

Cos θ = OM/OP

Tan θ = PM/OM

Csc θ = OP/PM

Sec θ = OP/OM

Cot θ = OM/PM



Now from the right-angled triangle POM we get;

PM2 + OM2 = OP2 ……………. (i)

Dividing both sides by OP2 we get,

PM2/OP2 + OM2/OP2 = OP2/OP2

or, (PM/OP)2 + (OM/OP)2 = 1

or, sin2 θ + cos2 θ = 1

Again, dividing both sides of (i) by OM2

PM2/OM2 + OM2/OM2 = OP2/OM2

or, (PM/OM)2 + 1 = (OP/OM)2

or, tan2 θ + 1 = sec2 θ

Finally, dividing both of (i) by PM2 we get;

PM2/PM2 + OM2/PM2 = OP2/PM2

or, 1 + (OM/PM)2 = (OP/PM)2

or, 1 + cot2 θ = csc2 θ


Corollary 1: From the relation sin2 θ + cos2 θ = 1 we deduce that

(i) 1 - cos2 θ = sin2 θ and

(ii) 1 - sin2 θ = cos2 θ


Corollary 2: From the relation 1 + tan2 θ = sec2 θ we deduce that

(i) sec2 θ - 1 = tan2 θ and

(ii) sec2 θ - tan2 θ = 1


Corollary 3: From the relation 1 + cot2 θ = csc2 θ we deduce that

(i) csc2 θ - 1 = cot2 θ and

(ii) csc2 θ - cot2 θ = 1


This is how the ratios are related to show that one is the reciprocal of the other according to the relations between the trigonometric ratios.

Basic Trigonometric Ratios 

Relations Between the Trigonometric Ratios

Problems on Trigonometric Ratios

Reciprocal Relations of Trigonometric Ratios

Trigonometrical Identity

Problems on Trigonometric Identities

Elimination of Trigonometric Ratios 

Eliminate Theta between the equations

Problems on Eliminate Theta 

Trig Ratio Problems

Proving Trigonometric Ratios

Trig Ratios Proving Problems

Verify Trigonometric Identities 





10th Grade Math

From Relations Between the Trigonometric Ratios to HOME PAGE


New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.



Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Fraction in Lowest Terms |Reducing Fractions|Fraction in Simplest Form

    Feb 28, 24 04:07 PM

    Fraction 8/16
    There are two methods to reduce a given fraction to its simplest form, viz., H.C.F. Method and Prime Factorization Method. If numerator and denominator of a fraction have no common factor other than 1…

    Read More

  2. Equivalent Fractions | Fractions |Reduced to the Lowest Term |Examples

    Feb 28, 24 01:43 PM

    Equivalent Fractions
    The fractions having the same value are called equivalent fractions. Their numerator and denominator can be different but, they represent the same part of a whole. We can see the shade portion with re…

    Read More

  3. Fraction as a Part of Collection | Pictures of Fraction | Fractional

    Feb 27, 24 02:43 PM

    Pictures of Fraction
    How to find fraction as a part of collection? Let there be 14 rectangles forming a box or rectangle. Thus, it can be said that there is a collection of 14 rectangles, 2 rectangles in each row. If it i…

    Read More

  4. Fraction of a Whole Numbers | Fractional Number |Examples with Picture

    Feb 24, 24 04:11 PM

    A Collection of Apples
    Fraction of a whole numbers are explained here with 4 following examples. There are three shapes: (a) circle-shape (b) rectangle-shape and (c) square-shape. Each one is divided into 4 equal parts. One…

    Read More

  5. Identification of the Parts of a Fraction | Fractional Numbers | Parts

    Feb 24, 24 04:10 PM

    Fractional Parts
    We will discuss here about the identification of the parts of a fraction. We know fraction means part of something. Fraction tells us, into how many parts a whole has been

    Read More