Basic Trigonometric Ratios

To know about the basic trigonometric ratios with respect to a right-angled triangle,

Trigonometric Ratios

let a ray OA revolve in the anti-clockwise direction and assume the position OA1, so that an angle ∠AOA1 = θ is formed.

Now any number of points P, Q, R, .......... are taken on OA1, and perpendiculars PX, QY, RZ, ........ are drawn on OA from those points respectively.

All the right-angled triangles POX, QOY, ROZ, ......... are similar to each other.

Now from the properties of similar triangles we know,

(i) PX/OP = QY/OQ = RZ/OR = .....

(iii) PX/OX = QY/ OQ = RZ/OZ = .....

(v) OP/OX = OQ/OX = OR/OZ = .....

(ii) OX/OP = QY/OQ = OZ/OR = .....

(iv) OP/PX = OQ/QY = OR/RZ = .....

(vi) OX/PX = OY/QY = OZ/RZ = .....

Thus we see in a set of similar right-angled triangles with respect to the same acute angle

(i) perpendicular : hypotenuse i.e., perpendicular/hypotenuse remains same.

(ii) base : hypotenuse and

(iii) perpendicular : base do not change for the aforesaid similar right-angled triangles. So we can say that the values of these ratios do not depend on the size of triangles or the length of their sides. The values entirely depend on the magnitude of the acute angle θ.

It is so because all the triangles are right angled triangles having a common acute angle θ. Similar relations will hold whatever be the measure of the acute angle θ.

So we see that in similar right-angled triangles the ratio of any two sides, with reference to a common acute angle, give a definite value. This is the concept on the basis trigonometric ratios.

Again we have shown that the ratio of any two sides of a right-angled triangle, have six different ratios.

These six ratios are identified by six different names, one for each.

Now we will define trigonometrical ratios of positive acute angles and their relations.

Definitions of Trigonometrical Ratios

Definitions of Trigonometrical Ratios:

Let a revolving line OY rotates about O in the anti-clockwise sense and starting from the initial position OX comes in the final position OY and traces out an angle ∠XOY = θ where ϴ is acute. Take a any point P on OY and draw PM perpendicular to OX. Clearly, POM is a right-angled triangle. With respect to the angle θ we shall call the sides, OP, PM and OM of the ∆POM as the hypotenuse, opposite side is also known as the perpendicular and adjacent side is also known as the base.

Now, the six trigonometrical ratios of the angle θ are defined as follows:

What are the six trigonometrical ratios?

Perpendicular/Hypotenuse = PM/OP = sine of the angle θ;

                       or, sin θ = PM/OP

Adjacent/Hypotenuse = OM/OP = cosine of the angle θ;

                 or, cos θ = OM/OP

Perpendicular/Adjacent = PM/OM = tangent of the angle θ;

                   or, tan θ = PM/OM

Hypotenuse/Perpendicular = OP/PM = cosecant of the angle θ;

                      or, csc θ = OP/PM

Hypotenuse/Adjacent = OP/OM= secant of the angle θ;

                 or, sec θ = OP/OM

and Adjacent/Perpendicular = OM/PM = cotangent of the angle θ;

                         or, cot θ = OM/PM

The six ratios sin θ, cos θ, tan θ, csc θ, sec θ and cot θ are called Trigonometrical Ratios of the angle θ.

Sometimes there are two other ratios in addition. They are known as Versed sine and Coversed sine.

 These two ratios are defined as follows:

 Versed sine of angle θ or Vers θ = 1 - cos θ  
and Coversed sine of angle
θ or Coverse θ = 1 - sin θ.


(i) Since each trigonometrical ratio is defined as the ratio of two lengths hence each of them is a pure number.

(ii) Note that sin
θ does not imply sin × θ; in fact, it represents the ratio of perpendicular and hypotenuse with respect to the angle θ of a right-angled triangle.

(iii) In a right-angled triangle the side opposite to right-angle is the hypotenuse, the side opposite to given angle
θ is the perpendicular and the remaining side is the adjacent side.

Basic Trigonometric Ratios 

Relations Between the Trigonometric Ratios

Problems on Trigonometric Ratios

Reciprocal Relations of Trigonometric Ratios

Trigonometrical Identity

Problems on Trigonometric Identities

Elimination of Trigonometric Ratios 

Eliminate Theta between the equations

Problems on Eliminate Theta 

Trig Ratio Problems

Proving Trigonometric Ratios

Trig Ratios Proving Problems

Verify Trigonometric Identities 

10th Grade Math

From Basic Trigonometric Ratios to HOME PAGE

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Successor and Predecessor | Successor of a Whole Number | Predecessor

    May 24, 24 06:42 PM

    Successor and Predecessor of a Whole Number
    The number that comes just before a number is called the predecessor. So, the predecessor of a given number is 1 less than the given number. Successor of a given number is 1 more than the given number…

    Read More

  2. Counting Natural Numbers | Definition of Natural Numbers | Counting

    May 24, 24 06:23 PM

    Natural numbers are all the numbers from 1 onwards, i.e., 1, 2, 3, 4, 5, …... and are used for counting. We know since our childhood we are using numbers 1, 2, 3, 4, 5, 6, ………..

    Read More

  3. Whole Numbers | Definition of Whole Numbers | Smallest Whole Number

    May 24, 24 06:22 PM

    The whole numbers are the counting numbers including 0. We have seen that the numbers 1, 2, 3, 4, 5, 6……. etc. are natural numbers. These natural numbers along with the number zero

    Read More

  4. Math Questions Answers | Solved Math Questions and Answers | Free Math

    May 24, 24 05:37 PM

    Math Questions Answers
    In math questions answers each questions are solved with explanation. The questions are based from different topics. Care has been taken to solve the questions in such a way that students

    Read More

  5. Estimating Sum and Difference | Reasonable Estimate | Procedure | Math

    May 24, 24 05:09 PM

    Estimating Sum or Difference
    The procedure of estimating sum and difference are in the following examples. Example 1: Estimate the sum 5290 + 17986 by estimating the numbers to their nearest (i) hundreds (ii) thousands.

    Read More