Problems on Trigonometric Identities

Here we will prove the problems on trigonometric identities. In an identity there are two sides of the equation, one side is known as ‘left hand side’ and the other side is known as ‘right hand side’ and to prove the identity we need to use logical steps showing that one side of the equation ends up with the other side of the equation.

Proving the problems on trigonometric identities:

1. (1 - sin A)/(1 + sin A) = (sec A - tan A)2

Solution:

L.H.S = (1 - sin A)/(1 + sin A)

= (1 - sin A)2/(1 - sin A) (1 + sin A),[Multiply both numerator and denominator by (1 - sin A)



= (1 - sin A)2/(1 - sin2 A)

= (1 - sin A)2/(cos2 A), [Since sin2 θ + cos2 θ = 1 ⇒ cos2 θ = 1 - sin2 θ]

= {(1 - sin A)/cos A}2

= (1/cos A - sin A/cos A)2

= (sec A – tan A)2 = R.H.S. Proved.


2. Prove that, √{(sec θ – 1)/(sec θ + 1)} = cosec θ - cot θ.

Solution:

L.H.S.= √{(sec θ – 1)/(sec θ + 1)}

= √[{(sec θ - 1) (sec θ - 1)}/{(sec θ + 1) (sec θ - 1)}]; [multiplying numerator and denominator by (sec θ - l) under radical sign]

= √{(sec θ - 1)2/(sec2 θ - 1)}

=√{(sec θ -1)2/tan2 θ}; [since, sec2 θ = 1 + tan2 θ ⇒ sec2 θ - 1 = tan2 θ]

= (sec θ – 1)/tan θ

= (sec θ/tan θ) – (1/tan θ)

= {(1/cos θ)/(sin θ/cos θ)} - cot θ

= {(1/cos θ) × (cos θ/sin θ)} - cot θ

= (1/sin θ) - cot θ

= cosec θ - cot θ = R.H.S. Proved.


3. tan4 θ + tan2 θ = sec4 θ - sec2 θ

Solution:

L.H.S = tan4 θ + tan2 θ

= tan2 θ (tan2 θ + 1)

= (sec2 θ - 1) (tan2 θ + 1) [since, tan2 θ = sec2 θ – 1]

= (sec2 θ - 1) sec2 θ [since, tan2 θ + 1 = sec2 θ]

= sec4 θ - sec2 θ = R.H.S. Proved.



More problems on trigonometric identities are shown where one side of the identity ends up with the other side.

4. . cos θ/(1 - tan θ) + sin θ/(1 - cot θ) = sin θ + cos θ

Solution:

L.H.S = cos θ/(1 - tan θ) + sin θ/(1 - cot θ)

= cos θ/{1 - (sin θ/cos θ)} + sin θ/{1 - (cos θ/sin θ)}

= cos θ/{(cos θ - sin θ)/cos θ} + sin θ/{(sin θ - cos θ/sin θ)}

= cos2 θ/(cos θ - sin θ) + sin2 θ/(cos θ - sin θ)

= (cos2 θ - sin2 θ)/(cos θ - sin θ)

= [(cos θ + sin θ)(cos θ - sin θ)]/(cos θ - sin θ)

= (cos θ + sin θ) = R.H.S. Proved.


5. Show that, 1/(csc A - cot A) - 1/sin A = 1/sin A - 1/(csc A + cot A)

Solution:

We have,

1/(csc A - cot A) + 1/(csc A + cot A)

= (csc A + cot A + csc A - cot A)/(csc2 A - cot2 A)

= (2 csc A)/1; [since, csc2 A = 1 + cot2 A ⇒ csc2A - cot2 A = 1]

= 2/sin A; [since, csc A = 1/sin A]

Therefore,

1/(csc A - cot A) + 1/(csc A + cot A) = 2/sin A

⇒ 1/(csc A - cot A) + 1/(csc A + cot A) = 1/sin A + 1/sin A

Therefore, 1/(csc A - cot A) - 1/sin A = 1/sin A - 1/(csc A + cot A) Proved.


6. (tan θ + sec θ - 1)/(tan θ - sec θ + 1) = (1 + sin θ)/cos θ

Solution:

L.H.S = (tan θ + sec θ - 1)/(tan θ - sec θ + 1)

= [(tan θ + sec θ) - (sec2 θ - tan2 θ)]/(tan θ - sec θ + 1), [Since, sec2 θ - tan2 θ = 1]

= {(tan θ + sec θ) - (sec θ + tan θ) (sec θ - tan θ)}/(tan θ - sec θ + 1)

= {(tan θ + sec θ) (1 - sec θ + tan θ)}/(tan θ - sec θ + 1)

= {(tan θ + sec θ) (tan θ - sec θ + 1)}/(tan θ - sec θ + 1)

= tan θ + sec θ

= (sin θ/cos θ) + (1/cos θ)

= (sin θ + 1)/cos θ

= (1 + sin θ)/cos θ = R.H.S. Proved.


Trigonometric Functions





10th Grade Math

From Problems on Trigonometric Identities to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Concept of Fractions |Concept of Half| Concept of One Fourth|Two Third

    Nov 06, 24 12:16 AM

    Half of a Collection
    Concept of fractions will help us to express different fractional parts of a whole. One-half When an article or a collection of objects is divided into two equal parts is called as half of the whole.

    Read More

  2. 2nd Grade Division Word Problems | Worksheet on Division Word Problems

    Nov 05, 24 01:49 PM

    Division Word Problems Grade 2

    Read More

  3. 2nd Grade Math Practice | Second Grade Math |2nd Grade Math Worksheets

    Nov 05, 24 09:15 AM

    In 2nd grade math practice you will get all types of examples on different topics along with the solutions. Second grade math games are arranged in such a way that students can learn math

    Read More

  4. 2nd Grade Division Worksheet | Dividing 2-digit by 1-digit Numbers

    Nov 05, 24 01:15 AM

    Division Fact 12 ÷ 3
    Dividing 2-digit by 1-digit Numbers

    Read More

  5. Even and Odd Numbers Between 1 and 100 | Even and Odd Numbers|Examples

    Nov 05, 24 12:55 AM

    even and odd numbers
    All the even and odd numbers between 1 and 100 are discussed here. What are the even numbers from 1 to 100? The even numbers from 1 to 100 are:

    Read More