Trigonometrical Ratios of (270° + θ)

What are the relations among all the trigonometrical ratios of (270° + θ)?

In trigonometrical ratios of angles (270° + θ) we will find the relation between all six trigonometrical ratios.

We know that,

sin (90° + θ) = cos θ

cos (90° + θ) = - sin θ

tan (90° + θ) = - cot θ

csc (90° + θ) = sec θ

sec ( 90° + θ) = - csc θ

cot ( 90° + θ) = - tan θ

and

sin (180° + θ) = - sin θ

cos (180° + θ) = - cos θ

tan (180° + θ) = tan θ

csc (180° + θ) = -csc θ

sec (180° + θ) = - sec θ

cot (180° + θ) = cot θ

Using the above proved results we will prove all six trigonometrical ratios of (180° - θ).

sin (270° + θ) = sin [1800 + 90° + θ]

                   = sin [1800 + (90° + θ)]    

                   = - sin (90° + θ), [since sin (180° + θ) = - sin θ]

Therefore, sin (270° + θ) = - cos θ, [since sin (90° + θ) = cos θ]

 

cos (270° + θ) = cos [1800 + 90° + θ]

                    = cos [I 800 + (90° + θ)]

                    = - cos (90° + θ), [since cos (180° + θ) = - cos θ]

Therefore, cos (270° + θ) = sin θ, [since cos (90° + θ) = - sin θ]

 

tan ( 270° + θ) = tan [1800 + 90° + θ]

                     = tan [180° + (90° + θ)]

                     = tan (90° + θ), [since tan (180° + θ) = tan θ]

Therefore, tan (270° + θ) = - cot θ, [since tan (90° + θ) = - cot θ]

 

csc (270° + θ) = \(\frac{1}{sin (270° + \Theta)}\)

                    = \(\frac{1}{- cos \Theta}\), [since sin (270° + θ) = - cos θ]

Therefore, csc (270° + θ) = - sec θ;

 

sec (270° + θ) =\(\frac{1}{cos (270° + \Theta)}\)

                    = \(\frac{1}{sin \Theta}\), [since cos (270° + θ) = sin θ]

Therefore, sec (270° + θ) = csc θ

and

cot (270° + θ) = \(\frac{1}{tan (270° + \Theta)}\)

                    = \(\frac{1}{- cot \Theta}\), [since tan (270° + θ) =  - cot θ]

Therefore, cot (270° + θ) = - tan θ.


Solved examples:

1. Find the value of csc 315°.

Solution:

csc 315° = sec (270 + 45)°

             = - sec 45°; since we know, csc (270° + θ) = - sec θ

             = - √2


2. Find the value of cos 330°.

Solution:

cos 330° = cos (270 + 60)°

             = sin 60°; since we know, cos (270° + θ) = sin θ

             = \(\frac{√3}{2}\)

 Trigonometric Functions





11 and 12 Grade Math

From Trigonometrical Ratios of (270° + θ) to HOME PAGE


New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.



Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Rupees and Paise | Paise Coins | Rupee Coins | Rupee Notes

    Dec 04, 23 02:14 PM

    Different types of Indian Coins
    Money consists of rupees and paise; we require money to purchase things. 100 paise make one rupee. List of paise and rupees in the shape of coins and notes:

    Read More

  2. Months of the Year | List of 12 Months of the Year |Jan, Feb, Mar, Apr

    Dec 04, 23 01:50 PM

    Months of the Year
    There are 12 months in a year. The months are January, February, march, April, May, June, July, August, September, October, November and December. The year begins with the January month. December is t…

    Read More

  3. The Story about Seasons | Spring | Summer | Autumn | Winter

    Dec 04, 23 01:49 PM

    The Four Seasons
    Kids let’s enjoy the story about seasons. Here we will discuss about the four seasons and the duration. Some months are too hot and some are too cold. The period of hot months is called the hot

    Read More