Reciprocal Relations of Trigonometric Ratios

Reciprocal relations of trigonometric ratios are explained here to represent the relationship between the three pairs of trigonometric ratios as well as their reciprocals.

Let OMP be a right angled triangle at M and MOP = θ.

Reciprocal Relations of Trigonometric RatiosReciprocal Relations of Trigonometric Ratios

According to the definition of trigonometric ratios we have,

 sin θ = perpendicular/hypotenuse = MP/PO ………….. (i)

and csc θ = hypotenuse/perpendicular = PO/MP ………….. (ii)

From (i) sin θ = 1/(PO/MP)

⇒ sin θ = 1/csc θ ………………… (A)

Again, from (ii) csc θ = 1/(MP/PO)

⇒ csc θ = 1/sin θ ………………… (B)

From (A) and (B) we conclude that

sin θ and csc θ are reciprocal of each other.


cos θ = adjacent/hypotenuse = OM/OP ………….. (iii)

and sec θ = hypotenuse/adjacent = OP/OM ………….. (iv)

From (iii) cos θ = 1/(OP/OM)

⇒ cos θ = 1/sec θ ………………… (C)

Again, from (iv) sec θ = 1/(OM/OP)

⇒ sec θ = 1/cos θ ………………… (D)

From (C) and (D) we conclude that

cos θ and sec θ are reciprocal of each other.


tan θ = perpendicular/adjacent = MP/OM ………….. (v)

and cot θ = adjacent/perpendicular = OM/MP ………….. (vi)

From (v) tan θ = 1/(OM/MP)

⇒ tan θ = 1/cot θ ………………… (E)

Again, from (vi) cot θ = 1/(MP/OM)

⇒ cot θ = 1/tan θ ………………… (F)

From (E) and (F) we conclude that

 tan θ and cot θ are reciprocal of each other.

To find values of trig functions we can use these reciprocal relationships to solve different types of problems.


Note:

From the above discussion about the reciprocal trigonometric functions  we get;

1. sin θ  ∙ csc θ = 1

2. cos θ ∙ sec θ = 1

3. tan θ ∙ cot θ  = 1

Trigonometric Functions






10th Grade Math

From Reciprocal Relations of Trigonometric Ratios to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Volume of a Cuboid | Volume of Cuboid Formula | How to Find the Volume

    Jul 20, 25 12:58 PM

    Volume of Cuboid
    Cuboid is a solid box whose every surface is a rectangle of same area or different areas. A cuboid will have a length, breadth and height. Hence we can conclude that volume is 3 dimensional. To measur…

    Read More

  2. 5th Grade Volume | Units of Volume | Measurement of Volume|Cubic Units

    Jul 20, 25 10:22 AM

    Cubes in Cuboid
    Volume is the amount of space enclosed by an object or shape, how much 3-dimensional space (length, height, and width) it occupies. A flat shape like triangle, square and rectangle occupies surface on…

    Read More

  3. Worksheet on Area of a Square and Rectangle | Area of Squares & Rectan

    Jul 19, 25 05:00 AM

    Area and Perimeter of Square and Rectangle
    We will practice the questions given in the worksheet on area of a square and rectangle. We know the amount of surface that a plane figure covers is called its area. 1. Find the area of the square len…

    Read More

  4. Area of Rectangle Square and Triangle | Formulas| Area of Plane Shapes

    Jul 18, 25 10:38 AM

    Area of a Square of Side 1 cm
    Area of a closed plane figure is the amount of surface enclosed within its boundary. Look at the given figures. The shaded region of each figure denotes its area. The standard unit, generally used for…

    Read More

  5. What is Area in Maths? | Units to find Area | Conversion Table of Area

    Jul 17, 25 01:06 AM

    Concept of Area
    The amount of surface that a plane figure covers is called its area. It’s unit is square centimeters or square meters etc. A rectangle, a square, a triangle and a circle are all examples of closed pla…

    Read More