Problems on Trigonometric Ratio of Standard Angle

How to solve the problems on Trigonometric Ratio of Standard Angle?

We know the standard angles are 0°, 30°, 45°, 60° and 90°. The questions are based on these standard angles. Here we will learn how to solve the standard angle of trigonometry related question.

Standard angles in trigonometry generally mean those angles whose trigonometric ratios can determine without using calculators. To find the values of trigonometric ratios of these standard angles we need to follow the trigonometric table.


Worked-out problems on trigonometric ratio of standard angle:

1. If β = 30°, prove that 3 sin β - 4 sin\(^{3}\) β = sin 3β.

Solution:

L.H.S = 3 sin β - 4 sin\(^{3}\) β

 = 3 sin 30° – 4. sin\(^{3}\) 30°

= 3 ∙ (1/2) - 4 ∙ (1/2)\(^{3}\)

= 3/2 – 4 ∙  1/8

3/2 – ½

=  1

R.H.S. = sin 3A

= sin 3 ∙ 30°

= sin 90°

= 1

Therefore, L.H.S. = R.H.S. (Proved)


2. Find the value of 4/3 tan\(^{2}\) 60° + 3 cos\(^{2}\)  30° - 2 sec\(^{2}\)  30° - 3/4 cot\(^{2}\)  60°

Solution:

The given expression

\(\frac{4}{3} \cdot (\sqrt{3})^{2} + 3 \cdot  (\frac{\sqrt{3}}{2})^{2} - 2  \cdot  (\frac{2\sqrt{3}}{3})^{2} - \frac{3}{4} \cdot  (\frac{\sqrt{3}}{3})^{2}\)

= \(\frac{4}{3} \cdot  3 + 3 \cdot  \frac{3}{4} - 2 \cdot  \frac{12}{9} - \frac{3}{4} \cdot  \frac{3}{9}\)

= 4 + 9/4 - 8/3 – 1/4

= 10/3

= \(3\tfrac{1}{3}\)

 

3. If θ = 30°, prove that cos 2θ = cos\(^{2}\) θ -  sin\(^{2}\) θ

Solution:

L. H. S. = cos 2θ

= cos 2 ∙ 30°

= cos 60°

=  1/2

And R. H. S. = cos\(^{2}\) θ -  sin\(^{2}\) θ

= cos\(^{2}\) 30° - sin\(^{2}\) 30°

= (√3/2)\(^{2}\) – (1/2)\(^{2}\)

= ¾ - ¼

= 1/2

Therefore,  L.H.S = R.H.S. (Proved)


4. If A = 60° and B = 30°, verify that sin (A - B) = sin A cos B - cos A sin B

Solution:

L.H.S. = sin (A - B)

= sin (60° - 30°)

= sin 30°

= ½

R.H.S. = sin A cos B - cos A sin B

= sin 60° cos 30° - cos 60° sin 30°

= \(\frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2} - \frac{1}{2} \times \frac{1}{2}\)

= ¾ - ¼

= 2/4

= ½

Therefore, L.H.S. = R.H.S. (Proved)


5. If sin (x + y) = 1 and cos (x - y) = \(\frac{\sqrt{3}}{2}\), find x and y.

Solution:

sin (x + y) = 1

 sin (x + y) = sin 90°, [since sin 90° = 1]

⇒ x + y = 90° .........................(A)

cos (x - y) = \(\frac{\sqrt{3}}{2}\)

⇒ cos (x - y) = cos 30°

⇒ x - y = 30° .........................(B)

Adding, (A) and (B), we get

                   x + y =  90°

                   x - y =  30°

                  2x     = 120°

                    x = 60°, [Dividing both sides by 2]

Putting the value of x = 60° in (A) we get,

60° + y = 90°

Subtract 60° from both sides

                    60° + y = 90°

                   -60°       -60°

                            y = 30°

Therefore, x = 60° and y = 30°.

 Trigonometric Functions





11 and 12 Grade Math

From Problems on Trigonometric Ratio of Standard Angle to HOME PAGE


New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.



Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Rupees and Paise | Paise Coins | Rupee Coins | Rupee Notes

    Dec 04, 23 02:14 PM

    Different types of Indian Coins
    Money consists of rupees and paise; we require money to purchase things. 100 paise make one rupee. List of paise and rupees in the shape of coins and notes:

    Read More

  2. Months of the Year | List of 12 Months of the Year |Jan, Feb, Mar, Apr

    Dec 04, 23 01:50 PM

    Months of the Year
    There are 12 months in a year. The months are January, February, march, April, May, June, July, August, September, October, November and December. The year begins with the January month. December is t…

    Read More

  3. The Story about Seasons | Spring | Summer | Autumn | Winter

    Dec 04, 23 01:49 PM

    The Four Seasons
    Kids let’s enjoy the story about seasons. Here we will discuss about the four seasons and the duration. Some months are too hot and some are too cold. The period of hot months is called the hot

    Read More