Problems on Trigonometric Ratio of Standard Angle

How to solve the problems on Trigonometric Ratio of Standard Angle?

We know the standard angles are 0°, 30°, 45°, 60° and 90°. The questions are based on these standard angles. Here we will learn how to solve the standard angle of trigonometry related question.

Standard angles in trigonometry generally mean those angles whose trigonometric ratios can determine without using calculators. To find the values of trigonometric ratios of these standard angles we need to follow the trigonometric table.


Worked-out problems on trigonometric ratio of standard angle:

1. If β = 30°, prove that 3 sin β - 4 sin\(^{3}\) β = sin 3β.

Solution:

L.H.S = 3 sin β - 4 sin\(^{3}\) β

 = 3 sin 30° – 4. sin\(^{3}\) 30°

= 3 ∙ (1/2) - 4 ∙ (1/2)\(^{3}\)

= 3/2 – 4 ∙  1/8

3/2 – ½

=  1

R.H.S. = sin 3A

= sin 3 ∙ 30°

= sin 90°

= 1

Therefore, L.H.S. = R.H.S. (Proved)


2. Find the value of 4/3 tan\(^{2}\) 60° + 3 cos\(^{2}\)  30° - 2 sec\(^{2}\)  30° - 3/4 cot\(^{2}\)  60°

Solution:

The given expression

\(\frac{4}{3} \cdot (\sqrt{3})^{2} + 3 \cdot  (\frac{\sqrt{3}}{2})^{2} - 2  \cdot  (\frac{2\sqrt{3}}{3})^{2} - \frac{3}{4} \cdot  (\frac{\sqrt{3}}{3})^{2}\)

= \(\frac{4}{3} \cdot  3 + 3 \cdot  \frac{3}{4} - 2 \cdot  \frac{12}{9} - \frac{3}{4} \cdot  \frac{3}{9}\)

= 4 + 9/4 - 8/3 – 1/4

= 10/3

= \(3\tfrac{1}{3}\)

 

3. If θ = 30°, prove that cos 2θ = cos\(^{2}\) θ -  sin\(^{2}\) θ

Solution:

L. H. S. = cos 2θ

= cos 2 ∙ 30°

= cos 60°

=  1/2

And R. H. S. = cos\(^{2}\) θ -  sin\(^{2}\) θ

= cos\(^{2}\) 30° - sin\(^{2}\) 30°

= (√3/2)\(^{2}\) – (1/2)\(^{2}\)

= ¾ - ¼

= 1/2

Therefore,  L.H.S = R.H.S. (Proved)


4. If A = 60° and B = 30°, verify that sin (A - B) = sin A cos B - cos A sin B

Solution:

L.H.S. = sin (A - B)

= sin (60° - 30°)

= sin 30°

= ½

R.H.S. = sin A cos B - cos A sin B

= sin 60° cos 30° - cos 60° sin 30°

= \(\frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2} - \frac{1}{2} \times \frac{1}{2}\)

= ¾ - ¼

= 2/4

= ½

Therefore, L.H.S. = R.H.S. (Proved)


5. If sin (x + y) = 1 and cos (x - y) = \(\frac{\sqrt{3}}{2}\), find x and y.

Solution:

sin (x + y) = 1

 sin (x + y) = sin 90°, [since sin 90° = 1]

⇒ x + y = 90° .........................(A)

cos (x - y) = \(\frac{\sqrt{3}}{2}\)

⇒ cos (x - y) = cos 30°

⇒ x - y = 30° .........................(B)

Adding, (A) and (B), we get

                   x + y =  90°

                   x - y =  30°

                  2x     = 120°

                    x = 60°, [Dividing both sides by 2]

Putting the value of x = 60° in (A) we get,

60° + y = 90°

Subtract 60° from both sides

                    60° + y = 90°

                   -60°       -60°

                            y = 30°

Therefore, x = 60° and y = 30°.

 Trigonometric Functions





11 and 12 Grade Math

From Problems on Trigonometric Ratio of Standard Angle to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Mixed Addition and Subtraction | Questions on Addition

    Jan 12, 25 02:14 PM

    In worksheet on mixed addition and subtraction the questions involve both addition and subtraction together; all grade students can practice the questions on addition and subtraction together.

    Read More

  2. Estimating Sums and Differences | Estimations | Practical Calculations

    Jan 12, 25 02:02 PM

    Estimating Difference
    For estimating sums and differences in the number we use the rounded numbers for estimations to its nearest tens, hundred, and thousand. In many practical calculations, only an approximation is requir…

    Read More

  3. Combination of Addition and Subtraction | Mixed Addition & Subtraction

    Jan 12, 25 01:36 PM

    Add and Sub
    We will discuss here about the combination of addition and subtraction. The rules which can be used to solve the sums involving addition (+) and subtraction (-) together are: I: First add

    Read More

  4. Checking Subtraction using Addition |Use Addition to Check Subtraction

    Jan 12, 25 01:13 PM

    Checking Subtraction using Addition Worksheet
    We can check subtraction by adding the difference to the smaller number. Since the sum of difference and smaller number is equal to the larger number, subtraction is correct.

    Read More

  5. Worksheet on Subtraction of 4-Digit Numbers|Subtracting 4-Digit Number

    Jan 12, 25 09:04 AM

    Worksheet on Subtraction of 4-Digit Numbers
    Practice the questions given in the worksheet on subtraction of 4-digit numbers. Here we will subtract two 4-digit numbers (without borrowing and with borrowing) to find the difference between them.

    Read More