Trigonometrical Ratios of some Particular Angles

Trigonometrical ratios of some particular angles i.e., 120°, -135°, 150° and 180° are given below.

1. sin 120° = sin (1 × 90° + 30°) = cos 30° = \(\frac{√3}{2}\);

cos 120° = cos (1 × 90° + 30°) = - sin 30° = - \(\frac{1}{2}\); 

tan 120° = tan (1 × 90° + 30°) = - cot 30° = - √3;

csc 120° = csc (1 × 90° + 30°) = sec 30° = \(\frac{2}{√3}\);

sec 120° = sec (1 × 90° + 30°) = - csc 30° = - 2;

tan 120° = tan (1 × 90° + 30°) = - cot 30° = - √3;

cot 120° = cot (1 × 90° + 30°) = - tan 30° = - \(\frac{1}{√3}\).

2. sin (- 135°)= - sin 135°= - sin (1 × 90°+ 45°) = - cos 45° = - \(\frac{1}{√2}\);

cos (- 135°)= cos 135°= cos (1 × 90°+ 45°) = - sin 45°= - \(\frac{1}{√2}\);

tan (- 135°) = - tan 135° = - tan ( 1 × 90° + 45°) = - (- cot 45°) = 1;

csc (- 135°)= - csc 135°= - csc (1 × 90°+ 45°)= - sec 45° = - √2;

sec (- 135°)= sec 135°= sec (1 × 90°+ 45°)= - csc 45°= - √2;

cot (- 135°) = - cot 135° = - cot ( 1 × 90° + 45°) = - (-tan 45°) = 1.


3. sin 150° = sin (2 × 90° - 30°) = sin 30° = 1/2;

cos 150° = cos (2 × 90° - 30°) = cos 30° = - \(\frac{√3}{2}\);

tan 150° tan (2 × 90° - 30°) = - tan 30° = - \(\frac{1}{√3}\);

csc 150° = csc (2 × 90° - 30°) = csc 30° = 2;

sec 150° = sec (2 × 90° - 30°) = sec 30° = - \(\frac{2}{√3}\);

cot 150° = cot (2 × 90° - 30°) = - cot 300 = - √3.


4. sin 180° = sin (2 × 90° - 0°) = sin 0° = 0;

cos 180° = cos (2 × 90° - 0°) = - cos 0° = - 1;

tan 180° = tan (2 × 90° + 0°) = tan 0° = 0;

csc 180° = csc (2 × 90° - 0°) = csc 0° = Undefined;

sec 180° = sec (2 × 90° - 0°) = - sec 0° = - 1;

cot 180° = cot (2 × 90° + 0°) = cot 0° = Undefined.

 

5. sin 270° = sin (3 × 90° + 0°) = - cos 0° = - 1;

cos 270° = cos (3 × 90° + 0°) = sin 0° = 0;

tan 270° = tan (3 × 90° + 0°) = - cot 0° = Undefined;

csc 270° = csc (3 × 90° + 0°) = - sec 0° = - 1;

sec 270° = sec (3 × 90° + 0°) = csc 0° = Undefined;

cot 270° = cot (3 × 90° + 0°) = - tan 0° = 0.

These trigonometrical ratios of some particular angles (120°, -135°, 150° and 180°) are required to solve various problems.

 Trigonometric Functions





11 and 12 Grade Math

From Trigonometrical Ratios of some Particular Angles to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Formation of Square and Rectangle | Construction of Square & Rectangle

    Jul 16, 25 02:45 AM

    Construction of a Square
    In formation of square and rectangle we will learn how to construct square and rectangle. Construction of a Square: We follow the method given below. Step I: We draw a line segment AB of the required…

    Read More

  2. Perimeter of a Figure | Perimeter of a Simple Closed Figure | Examples

    Jul 16, 25 02:33 AM

    Perimeter of a Figure
    Perimeter of a figure is explained here. Perimeter is the total length of the boundary of a closed figure. The perimeter of a simple closed figure is the sum of the measures of line-segments which hav…

    Read More

  3. Formation of Numbers | Smallest and Greatest Number| Number Formation

    Jul 15, 25 11:46 AM

    In formation of numbers we will learn the numbers having different numbers of digits. We know that: (i) Greatest number of one digit = 9,

    Read More

  4. 5th Grade Quadrilaterals | Square | Rectangle | Parallelogram |Rhombus

    Jul 15, 25 02:01 AM

    Square
    Quadrilaterals are known as four sided polygon.What is a quadrilateral? A closed figure made of our line segments is called a quadrilateral. For example:

    Read More

  5. 5th Grade Geometry Practice Test | Angle | Triangle | Circle |Free Ans

    Jul 14, 25 01:53 AM

    Name the Angles
    In 5th grade geometry practice test you will get different types of practice questions on lines, types of angle, triangles, properties of triangles, classification of triangles, construction of triang…

    Read More