Problems on Trigonometric Ratios

Some trigonometric solutions based problems on trigonometric ratios are shown here with the step-by-step explanation.

1. If sin θ = 8/17, find other trigonometric ratios of <θ.

Solution:

Problems on Trigonometric Ratios



Let us draw a ∆ OMP in which ∠M = 90°.

Then sin θ = MP/OP = 8/17.

Let MP = 8k and OP = 17k, where k is positive.





By Pythagoras’ theorem, we get



OP2 = OM2 + MP2

⇒ OM2 = OP2 – MP2

⇒ OM2 = [(17k)2 – (8k)2]

⇒ OM2 = [289k2 – 64k2]

⇒ OM2 = 225k2

⇒ OM = √(225k2)

⇒ OM = 15k

Therefore, sin θ = MP/OP = 8k/17k = 8/17

cos θ = OM/OP = 15k/17k = 15/17

tan θ = Sin θ/Cos θ = (8/17 × 17/15) = 8/15

csc θ = 1/sin θ = 17/8

sec θ = 1/cos θ = 17/15 and

cot θ = 1/tan θ = 15/8.


2. If Cos A = 9/41, find other trigonometric ratios of ∠A.

Solution:

Problems on Trigonometric Ratio


Let us draw a ∆ ABC in which ∠B = 90°.

Then cos θ = AB/AC = 9/41.

Let AB = 9k and AC = 41k, where k is positive.





By Pythagoras’ theorem, we get

AC2 = AB2 + BC2

⇒ BC2 = AC2 – AB2

⇒ BC2 = [(41k)2 – (9k)2]

⇒ BC2 = [1681k2 – 81k2]

⇒ BC2 = 1600k2

⇒ BC = √(1600k2)

⇒ BC = 40k

Therefore, sin A = BC/AC = 40k/41k = 40/41

cos A = AB/AC = = 9k/41k = 9/41

tan A = Sin A/Cos A = (40/41 × 41/9) = 40/9

csc A = 1/sin A = 41/40

sec A = 1/cos A = 41/9 and

cot A = 1/tan A = 9/40.


3. Show that the value of sin θ and cos θ cannot be more than 1.

Solution:

We know, in a right angle triangle the hypotenuse is the longest side.

Examples on Trigonometric Ratios










sin θ = perpendicular/hypotenuse = MP/OP < 1 since perpendicular cannot be greater than hypotenuse; sin θ cannot be more than 1.

Similarly, cos θ = base/hypotenuse = OM/OP < 1 since base cannot be greater than hypotenuse; cos θ cannot be more than 1.

4. Is that possible when A and B be acute angles, sin A = 0.3 and cos B = 0.7?

Solution:

Since A and B are acute angles, 0 ≤ sin A ≤ 1 and 0 ≤ cos B ≤ 1, that means the value of sin A and cos B lies between 0 to 1. So, it is possible that sin A = 0.3 and cos B = 0.7


5. If 0° ≤ A ≤ 90° can sin A = 0.4 and cos A = 0.5 be possible?

Solution:

We know that sin2A + cos2A = 1

Now put the value of sin A and cos A in the above equation we get;

(0.4)2 + (0.5)2 = 0.41 which is ≠ 1, sin A = 0.4 and cos A = 0.5 cannot be possible.



6. If sin θ = 1/2, show that (3cos θ - 4 cos3 θ) =0.

Solution:

Example on Trigonometric Ratios

Let us draw a ∆ ABC in which ∠B = 90° and ∠BAC = θ.

Then sin θ = BC/AC = 1/2.

Let BC = k and AC = 2k, where k is positive.





By Pythagoras’ theorem, we get

AC2 = AB2 + BC2

⇒ AB2 = AC2 – BC2

⇒ AB2 = [(2k)2 – k2]

⇒ AB2 = [4k2 – k2]

⇒ AB2 = 3k2

⇒ AB = √(3k2)

⇒ AB = √3k.

Therefore, cos θ = AB/AC = √3k/2k = √3/2

Now, (3cos θ - 4 cos3 θ)

= 3√3/2 - 4 ×(√3/2)3

= 3√3/2 - 4 × 3√3/8

= 3√3/2 - 3√3/2

= 0

Hence, (3cos θ - 4 cos<sup>3</sup> θ) = 0.


7. Show that sin α + cos α > 1 when 0° ≤ α ≤ 90°

Solution:

Trigonometric Problems











From the right triangle MOP,

Sin α = perpendicular/ hypotenuse

Cos α = base/ hypotenuse

Now, Sin α + Cos α

= perpendicular/ hypotenuse + base/ hypotenuse

= (perpendicular + base)/hypotenuse, which is > 1, Since we know that the sum of two sides of a triangle is always greater than the third side.


8. If cos θ = 3/5, find the value of (5csc θ - 4 tan θ)/(sec θ + cot θ)

Solution:

Trigonometric Problem

Let us draw a ∆ ABC in which ∠B = 90°.

Let ∠A = θ°

Then cos θ = AB/AC = 3/5.

Let AB = 3k and AC = 5k, where k is positive.

By Pythagoras’ theorem, we get

AC2 = AB2 + BC2

⇒ BC2 = AC2 – AB2

⇒ BC2 = [(5k)2 – (3k)2]

⇒ BC2 = [25k2 – 9k2]

⇒ BC2 = 16k2

⇒ BC = √(16k2)

⇒ BC = 4k

Therefore, sec θ = 1/cos θ = 5/3

tan θ = BC/AB =4k/3k = 4/3

cot θ = 1/tan θ = 3/4 and

csc θ = AC/BC = 5k/4k = 5/4

Now (5csc θ -4 tan θ)/(sec θ + cot θ)

= (5 × 5/4 - 4 × 4/3)/(5/3 + 3/4)

= (25/4 -16/3)/(5/3 +3/4)

= 11/12 × 12/29

= 11/29


9. Express 1 + 2 sin A cos A as a perfect square.

Solution:

1 + 2 sin A cos A

= sin2 A + cos2 A + 2sin A cos A, [Since we know that sin2 θ + cos2 θ = 1]

= (sin A + cos A)2


10. If sin A + cos A = 7/5 and sin A cos A =12/25, find the values of sin A and cos A.

Solution:

sin A + cos A = 7/5

⇒ cos A = 7/5 - sin θ

Now from sin θ/cos θ = 12/25

We get, sin θ(7/5 - sin θ) = 12/25

or, 7 sin θ – 5 sin2 θ = 12/5

or, 35 sin θ - 35 sin2 θ = 12

or, 25sin2 θ -35 sin θ + 12 = 0

or, 25 sin2 θ -20 sin θ - 15 sin θ + 12 = 0

or, 5 sin θ(5 sin θ - 4) - 3(5 sin θ - 4) = 0

or, (5 sin θ - 3) (5 sin θ - 4) = 0

⇒ (5 sin θ - 3) = 0 or, (5 sin θ - 4) = 0

⇒ sin θ = 3/5 or, sin θ = 4/5

When sin θ = 3/5, cos θ = 12/25 × 5/3 = 4/5

Again, when sin θ = 4/5, cos θ = 12/25 × 5/4 = 3/5

Therefore, sin θ =3/5, cos θ = 4/5

or, sin θ =4/5, cos θ = 3/5.


11. If 3 tan θ = 4, evaluate (3sin θ + 2 cos θ)/(3sin θ - 2cos θ).

Solution: Given,

3 tan θ = 4

⇒ tan θ = 4/3

Now,

(3sin θ + 2 cos θ)/(3sin θ - 2cos θ)

= (3 tan θ + 2)/(3 tan θ - 2), [dividing both numerator and denominator by cos θ]

= (3 × 4/3 + 2)/(3 × 4/3 -2), putting the value of tan θ = 4/3

= 6/2

= 3.


12. If (sec θ + tan θ)/(sec θ - tan θ) = 209/79, find the value of θ.

Solution: (sec θ + tan θ)/(sec θ - tan θ) = 209/79

⇒ [(sec θ + tan θ) - (sec θ - tan θ)]/[(sec θ + tan θ) + (sec θ - tan θ)] = [209 – 79]/[209 + 79], (Applying componendo and dividendo)

⇒ 2 tan θ/2 sec θ =130/288

⇒ sin θ/cos θ × cos θ = 65/144

⇒ sin θ = 65/144.


13. If 5 cot θ = 3, find the value of (5 sin θ - 3 cos θ)/(4 sin θ + 3 cos θ).

Solution:

Given 5 cot θ = 3

⇒ cot θ = 3/5

Now (5 sin θ - 3 cos θ)/(4 sin θ + 3 cos θ)

= (5 - 3 cot θ)/(4 sin θ + 3 cot θ), [dividing both numerator and denominator by sin θ]

= (5 - 3 × 3/5)/(4 + 3 × 3/5)

= (5 - 9/5)/(4 + 9/5)

= (16/5 × 5/29)

= 16/29.


13. Find the value of θ (0° ≤ θ ≤ 90°), when sin2 θ - 3 sin θ + 2 = 0

Solution:

⇒ sin2 θ -3 sin θ + 2 = 0

⇒ sin2 θ – 2 sin θ – sin θ + 2 = 0

⇒ sin θ(sin θ - 2) - 1(sin θ - 2) = 0

⇒ (sin θ - 2)(sin θ - 1) = 0

⇒ (sin θ - 2) = 0 or, (sin θ - 1) = 0

⇒ sin θ = 2 or, sin θ = 1

So, value of sin θ can’t be greater than 1,

Therefore sin θ = 1

⇒ θ = 90°

Basic Trigonometric Ratios 

Relations Between the Trigonometric Ratios

Problems on Trigonometric Ratios

Reciprocal Relations of Trigonometric Ratios

Trigonometrical Identity

Problems on Trigonometric Identities

Elimination of Trigonometric Ratios 

Eliminate Theta between the equations

Problems on Eliminate Theta 

Trig Ratio Problems

Proving Trigonometric Ratios

Trig Ratios Proving Problems

Verify Trigonometric Identities 





10th Grade Math

From Problems on Trigonometric Ratios to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 14, 24 02:12 PM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  2. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Dec 14, 24 12:25 PM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More

  3. Patterns in Numbers | Patterns in Maths |Math Patterns|Series Patterns

    Dec 13, 24 08:43 AM

    Complete the Series Patterns
    We see so many patterns around us in our daily life. We know that a pattern is an arrangement of objects, colors, or numbers placed in a certain order. Some patterns neither grow nor reduce but only r…

    Read More

  4. Patterns in Math | Missing Number | Counting Numbers | Worksheets

    Dec 13, 24 12:31 AM

    Finding patterns in math is very important to understand the sequence in the series. We need to find the exact missing number that from the group of numbers. The counting numbers may be counting

    Read More

  5. Concept of Pattern | Similar Patterns in Mathematics | Similar Pattern

    Dec 12, 24 11:22 PM

    Patterns in Necklace
    Concept of pattern will help us to learn the basic number patterns and table patterns. Animals such as all cows, all lions, all dogs and all other animals have dissimilar features. All mangoes have si…

    Read More