Problems on Signs of Trigonometrical Ratios

We will learn how to solve various type of problems on signs of trigonometrical ratios of any angles.

1. For what real values of x is the equation 2 cos θ = x + 1/x possible?

Solution:

Given, 2 cos θ = x + 1/x

⇒ x\(^{2}\) - 2 cos θ ∙ x + 1 = 0, which is a quadratic in x. As x is real, distinct ≥ 0

⇒ (- 2 cos θ)\(^{2}\) - 4 ∙ 1 ∙ 1 ≥ 0

⇒ cos\(^{2}\) θ ≥ 1 but cos^2 θ ≤ 1

⇒ cos\(^{2}\) θ = 1

⇒ cos θ = 1, 1

Case I: When cos θ = 1, we get,

 x\(^{2}\) - 2x + 1 =0

⇒ x = 1

Case II: When cos θ = -1, we get,

x\(^{2}\) + 2x + 1 =0

⇒ x = -1.

Hence the values of x are 1 and -1.

 

2.  Solve sin θ + √3cos θ = 1, (0 < 0 < 360°).

Solution:

sin θ + √3cos θ = 1                       

⇒ √3cos θ = 1- sin θ  

⇒  (√3cos θ)\(^{2}\) = (1- sin θ)\(^{2}\)

⇒ 3cos\(^{2}\) θ = 1 - 2sin θ + sin\(^{2}\) θ

⇒ 3(1 - sin\(^{2}\) θ) - 1 + 2sin θ - sin\(^{2}\) θ = 0

⇒ 2 sin\(^{2}\) θ - sin θ - 1 = 0

⇒ 2 sin\(^{2}\) θ - 2 sin θ + sin θ - 1 = 0

⇒ (sin θ - 1)(2 sin θ +1  ) =0

Therefore, either sin θ - 1 = 0 or, 2 sin θ + 1 =0

If sin θ - 1= 0 then

sin θ = 1 = sin 90°                               

Therefore, θ = 90°

Again, 2 sin θ + 1 =0 gives, sin θ = -1/2

Now, since sin θ is negative, hence θ lies either in the third or in the fourth quadrant.

Since sin θ = -1/2 = - sin 30° = sin (180° + 30°) = sin 210°

and sin θ = - 1/2 = - sin 30° = sin (360° - 30°) = sin 330°

Therefore, θ = 210° or 330°

Therefore, the required solutions in

0 < θ < 360°are: 90°, 210° and 330°.

 

3. If the 5 sin x = 3, find the value of \(\frac{sec x  -  tan x}{sec x  +  tan x}\).

Solution:

Given 5 sin x = 3

⇒ sin x = 3/5.

Now \(\frac{sec x - tan x}{sec x + tan x}\)

 = \(\frac{\frac{1}{cos x}  -  \frac{sin x}{cos x}}{\frac{1}{cos x} + \frac{sin x}{cos x}}\)

= \(\frac{1  -  sin x}{1  +  sin x}\)

= \(\frac{1  -  \frac{3}{5}}{1  +  \frac{3}{5}}\)

= \(\frac{\frac{2}{5}}{\frac{8}{5}}\)

= 2/8

= ¼.

 

4. A, B, C, D are the four angles, taken in order of a cyclic quadrilateral. Prove that,
cot A + cot B + cot C + cot D = 0.

Solution:

We know that the opposite angles of a cyclic quadrilateral are supplementary.

Therefore, by question we have,

A + C= 180° or, C = 180° - A;

And B + D= 180° or, D = 180° - B.

Therefore, L. H. S. = cot A + cot B + cot C + cot D

= cot A + cot B + cot (180° - A) + cot (180° - B)

= cot A + cot B - cot A - cot B

= 0. Proved.

 

5. If tan α = - 2, find the values of the remaining trigonometric function of α.

Solution:

Given tan α = - 2 which is - ve, therefore, α lies in second or fourth quadrant.

Also sec\(^{2}\) α = 1 + tan\(^{2}\) α = 1 + (-2)\(^{2}\) = 5

⇒ sec α = ± √5.

Two cases arise:

Case I. When α lies in the second quadrant, sec α is (-ve).

Therefore, sec α = -√5

cos α = - 1/√5

sin α = \(\frac{sin \alpha}{cos \alpha} \cdot cos \alpha\) = tan α cos α = -2 -\(\frac{1}{\sqrt{5}}\) = 2/√5

⇒ csc α = √5/2.

Also tan α = -2

⇒ cot α = ½.

Case II. When α lies in the fourth quadrant, sec α is + ve

Therefore, sec α = √5

⇒ cos α = 1/√5

sin α = \(\frac{sin \alpha}{cos \alpha} \cdot cos \alpha\) = tan α cos α = -2 \(\frac{1}{\sqrt{5}}\) = 2/√5

 

6. If tan (α - β) = 1, sec (α + β) = 2/√3, find positive magnitudes of α and β.

Solution: 

We have, tan (α - β) = 1 = tan 45°                          

Therefore, α - β = 45° ………………. (1)

Again, sec (α + β)= 2/√3                 

⇒ cos (α + β)= √3/2 

⇒ cos (α + β) = cos 30°  or, cos (360° - 30°) = cos 330°  

Therefore, α + β = 30°  or, 330°

Since α and β are positive and α - β = 45°, hence we must have,

α + β = 330° …………….. (2)

(1)+ (2) gives, 2a = 375°            

⇒ α = {187\(\frac{1}{2}\)}°

and (2) - (1) gives,

2β = 285° or, β = {142\(\frac{1}{2}\)}°






11 and 12 Grade Math

From Problems on Signs of Trigonometrical Ratios to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.