Problems on Signs of Trigonometrical Ratios

We will learn how to solve various type of problems on signs of trigonometrical ratios of any angles.

1. For what real values of x is the equation 2 cos θ = x + 1/x possible?

Solution:

Given, 2 cos θ = x + 1/x

⇒ x2 - 2 cos θ ∙ x + 1 = 0, which is a quadratic in x. As x is real, distinct ≥ 0

⇒ (- 2 cos θ)2 - 4 ∙ 1 ∙ 1 ≥ 0

⇒ cos2 θ ≥ 1 but cos^2 θ ≤ 1

⇒ cos2 θ = 1

⇒ cos θ = 1, 1

Case I: When cos θ = 1, we get,

 x2 - 2x + 1 =0

⇒ x = 1

Case II: When cos θ = -1, we get,

x2 + 2x + 1 =0

⇒ x = -1.

Hence the values of x are 1 and -1.

 

2.  Solve sin θ + √3cos θ = 1, (0 < 0 < 360°).

Solution:

sin θ + √3cos θ = 1                       

⇒ √3cos θ = 1- sin θ  

⇒  (√3cos θ)2 = (1- sin θ)2

⇒ 3cos2 θ = 1 - 2sin θ + sin2 θ

⇒ 3(1 - sin2 θ) - 1 + 2sin θ - sin2 θ = 0

⇒ 2 sin2 θ - sin θ - 1 = 0

⇒ 2 sin2 θ - 2 sin θ + sin θ - 1 = 0

⇒ (sin θ - 1)(2 sin θ +1  ) =0

Therefore, either sin θ - 1 = 0 or, 2 sin θ + 1 =0

If sin θ - 1= 0 then

sin θ = 1 = sin 90°                               

Therefore, θ = 90°

Again, 2 sin θ + 1 =0 gives, sin θ = -1/2

Now, since sin θ is negative, hence θ lies either in the third or in the fourth quadrant.

Since sin θ = -1/2 = - sin 30° = sin (180° + 30°) = sin 210°

and sin θ = - 1/2 = - sin 30° = sin (360° - 30°) = sin 330°

Therefore, θ = 210° or 330°

Therefore, the required solutions in

0 < θ < 360°are: 90°, 210° and 330°.

 

3. If the 5 sin x = 3, find the value of secxtanxsecx+tanx.

Solution:

Given 5 sin x = 3

⇒ sin x = 3/5.

Now secxtanxsecx+tanx

 = 1cosxsinxcosx1cosx+sinxcosx

= 1sinx1+sinx

= 1351+35

= 2585

= 2/8

= ¼.

4. A, B, C, D are the four angles, taken in order of a cyclic quadrilateral. Prove that, 
cot A + cot B + cot C + cot D = 0.

Solution:

We know that the opposite angles of a cyclic quadrilateral are supplementary.

Therefore, by question we have,

A + C= 180° or, C = 180° - A;

And B + D= 180° or, D = 180° - B.

Therefore, L. H. S. = cot A + cot B + cot C + cot D

= cot A + cot B + cot (180° - A) + cot (180° - B) 

= cot A + cot B - cot A - cot B

= 0. Proved.

 

5. If tan α = - 2, find the values of the remaining trigonometric function of α.

Solution:

Given tan α = - 2 which is - ve, therefore, α lies in second or fourth quadrant.

Also sec2 α = 1 + tan2 α = 1 + (-2)2 = 5

⇒ sec α = ± √5.

Two cases arise:

Case I. When α lies in the second quadrant, sec α is (-ve).

Therefore, sec α = -√5

⇒ cos α = - 1/√5

sin α = sinαcosαcosα = tan α cos α = -2 ∙ -15 = 2/√5

⇒ csc α = √5/2.

Also tan α = -2

⇒ cot α = ½.

Case II. When α lies in the fourth quadrant, sec α is + ve

Therefore, sec α = √5

⇒ cos α = 1/√5

sin α = sinαcosαcosα = tan α cos α = -2 ∙ 15 = 2/√5

 

6. If tan (α - β) = 1, sec (α + β) = 2/√3, find positive magnitudes of α and β.

Solution: 

We have, tan (α - β) = 1 = tan 45°                          

Therefore, α - β = 45° ………………. (1)

Again, sec (α + β)= 2/√3                 

⇒ cos (α + β)= √3/2 

⇒ cos (α + β) = cos 30°  or, cos (360° - 30°) = cos 330°   

Therefore, α + β = 30°  or, 330° 

Since α and β are positive and α - β = 45°, hence we must have,

α + β = 330° …………….. (2)

(1)+ (2) gives, 2a = 375°            

⇒ α = {18712

and (2) - (1) gives,

2β = 285° or, β = {14212

 Trigonometric Functions






11 and 12 Grade Math

From Problems on Signs of Trigonometrical Ratios to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Volume of a Cuboid | Volume of Cuboid Formula | How to Find the Volume

    Jul 20, 25 12:58 PM

    Volume of Cuboid
    Cuboid is a solid box whose every surface is a rectangle of same area or different areas. A cuboid will have a length, breadth and height. Hence we can conclude that volume is 3 dimensional. To measur…

    Read More

  2. 5th Grade Volume | Units of Volume | Measurement of Volume|Cubic Units

    Jul 20, 25 10:22 AM

    Cubes in Cuboid
    Volume is the amount of space enclosed by an object or shape, how much 3-dimensional space (length, height, and width) it occupies. A flat shape like triangle, square and rectangle occupies surface on…

    Read More

  3. Worksheet on Area of a Square and Rectangle | Area of Squares & Rectan

    Jul 19, 25 05:00 AM

    Area and Perimeter of Square and Rectangle
    We will practice the questions given in the worksheet on area of a square and rectangle. We know the amount of surface that a plane figure covers is called its area. 1. Find the area of the square len…

    Read More

  4. Area of Rectangle Square and Triangle | Formulas| Area of Plane Shapes

    Jul 18, 25 10:38 AM

    Area of a Square of Side 1 cm
    Area of a closed plane figure is the amount of surface enclosed within its boundary. Look at the given figures. The shaded region of each figure denotes its area. The standard unit, generally used for…

    Read More

  5. What is Area in Maths? | Units to find Area | Conversion Table of Area

    Jul 17, 25 01:06 AM

    Concept of Area
    The amount of surface that a plane figure covers is called its area. It’s unit is square centimeters or square meters etc. A rectangle, a square, a triangle and a circle are all examples of closed pla…

    Read More