# Subtraction of Unlike Fractions

We will learn how to solve subtraction of unlike fractions. In order to subtract unlike fractions first we convert them as like fractions.

To subtract unlike fractions, we first convert them into like fractions. In order to make a common denominator, we find LCM of all the different denominators of given fractions and then make them equivalent fractions with a common denominators.

Let us consider some of the examples of subtracting unlike fractions:

1. Subtract 1/10 from 2/5.

Solution:

2/5 - 1/10

The L.C.M. of the denominators 10 and 5 is 10.

2/5 = (2 × 2)/(5 × 2) = 4/10, (because 10 ÷ 5 = 2)

1/10 = (1 × 1)/(10 × 1) = 1/10, (because 10 ÷ 10 = 1)

Thus, 2/5 - 1/10

= 4/10 - 1/10

= (4 - 1)/10

= 3/10

2. Subtract $$\frac{3}{8}$$ from $$\frac{5}{12}$$.

Solution:

Let us find the LCM of denominators 8 and 12. LCM is 24.

$$\frac{3}{8}$$ = $$\frac{3 × 3}{8 × 3}$$ = $$\frac{9}{24}$$ and

$$\frac{5}{12}$$ = $$\frac{5 × 2}{12 × 2}$$ = $$\frac{10}{24}$$

Now, subtract $$\frac{9}{24}$$ and $$\frac{10}{24}$$.

$$\frac{10}{24}$$ - $$\frac{9}{24}$$

= $$\frac{10 - 9}{24}$$

= $$\frac{1}{24}$$

Let us illustrate the above example pictorially as shown below.

The whole strip above has 24 equal parts. The fraction $$\frac{5}{12}$$ is equal to $$\frac{10}{24}$$. So the shaded portion represents $$\frac{10}{24}$$. We take away $$\frac{3}{8}$$ or $$\frac{9}{24}$$ of the above strip. The remaining part represents $$\frac{1}{24}$$ of the whole strip.

3. Subtract 4/9 from 5/7.

Solution:

5/7 - 4/9

The L.C.M. of the denominators 9 and 7 is 63.

5/7 = (5 × 9)/(7 × 9) = 45/63, (because 63 ÷ 7 = 9)

4/9 = (4 × 7)/(9 × 7) = 28/63, (because 63 ÷ 9 = 7)

Thus, 5/7 - 4/9

= 45/63 - 28/63

= (45 - 28)/63

= 17/63

4. Subtract 5/8 from 1.

Solution:

1 - 5/8

= 1/1 - 5/8

The L.C.M. of the denominators 1 and 8 is 8.

1/1 = (1 × 8)/(1 × 8) = 8/8, (because 8 ÷ 1 = 8)

5/8 = (5 × 1)/(8 × 1) = 5/8, (because 8 ÷ 8 = 1)

Thus, 1/1 - 5/8

= 8/8 - 5/8

= (8 - 5)/8

= 3/8

5. Subtract 19/36 from 23/24.

Solution:

23/24 - 19/36

The L.C.M. of the denominators 24 and 36 is 72.

23/24 = (23 × 3)/(24 × 3) = 69/72, (because 72 ÷ 24 = 3)

19/36 = (19 × 2)/(36 × 2) = 38/72, (because 72 ÷ 36 = 2)

Thus, 23/24 - 19/36

= 69/72 - 38/72

= (69 - 38)/72

= 31/72

6. Subtract 9/35 from 3/7.

Solution:

3/7 - 9/35

The L.C.M. of the denominators 7 and 35 is 35.

3/7 = (3 × 5)/(7 × 5) = 15/35, (because 35 ÷ 7 = 5)

9/35 = (9 × 1)/(35 × 1) = 9/35, (because 35 ÷ 35 = 1)

Thus, 3/7 - 9/35

= 15/35 - 9/35

= (15 - 9)/35

= 6/35

7. Subtract $$\frac{2}{5}$$ from 7.

Solution:

$$\frac{7}{1}$$ - $$\frac{2}{5}$$

= $$\frac{7 × 5 - 2 × 1}{5}$$ LCM of 1 and 5 is 5

= $$\frac{35 -2}{5}$$

= $$\frac{33}{5}$$

= 6$$\frac{3}{5}$$

Hence, 7 - $$\frac{2}{5}$$ = 6$$\frac{3}{5}$$

Note: We write the whole number in the fraction form by keeping 1 in the denominator.

Subtraction of Fractions having the Different Denominator:

 8. Subtract $$\frac{2}{3}$$ - $$\frac{1}{4}$$$$\frac{2}{3}$$ = $$\frac{8}{12}$$ [$$\frac{2 × 4}{3 × 4}$$ = $$\frac{8}{12}$$]$$\frac{1}{4}$$ = $$\frac{3}{12}$$ [$$\frac{1 × 3}{4 × 3}$$ = $$\frac{3}{12}$$]$$\frac{2}{3}$$ - $$\frac{1}{4}$$ = $$\frac{8}{12}$$ - $$\frac{3}{12}$$= $$\frac{8 - 3}{12}$$= $$\frac{5}{12}$$ Method 1:Step I: Find the L.C.M. of the denominators 3 and 4.L.C.M. of 3 and 4 is 12Step II: Write the equivalent fractions of $$\frac{2}{3}$$ and $$\frac{1}{4}$$ with denominator 12.Step III: SubtractStep IV: Write the difference in lowest terms.
 9. Subtract $$\frac{5}{6}$$ - $$\frac{1}{8}$$$$\frac{5}{6}$$ - $$\frac{1}{8}$$ = $$\frac{(24 ÷ 6) × 5 – (24 ÷ 8) × 1}{24}$$= $$\frac{(4 × 5) – (3 × 1)}{24}$$= $$\frac{20 - 3}{24}$$= $$\frac{17}{24}$$ Method 2:

Subtraction of Mixed Numbers:

 Method I: Subtract 8$$\frac{1}{2}$$ - 3$$\frac{1}{4}$$8$$\frac{1}{2}$$ - 3$$\frac{1}{4}$$ = (8 – 3) + [$$\frac{1}{2}$$ - $$\frac{1}{4}$$]= 5 + [$$\frac{1}{2}$$ - $$\frac{1}{4}$$]= 5 + [$$\frac{2}{4}$$ - $$\frac{1}{4}$$]= 5 + $$\frac{1}{4}$$= 5$$\frac{1}{4}$$ Method II: Subtract 8$$\frac{1}{2}$$ - 3$$\frac{1}{4}$$L.C.M. of 4 and 2 is 4.8$$\frac{1}{2}$$ - 3$$\frac{1}{4}$$ = $$\frac{17}{2}$$ - $$\frac{13}{4}$$= $$\frac{34}{4}$$ - $$\frac{13}{4}$$= $$\frac{34 - 13}{4}$$]= $$\frac{21}{4}$$= 5$$\frac{1}{4}$$

2. What is 1$$\frac{4}{5}$$ less than 4$$\frac{1}{2}$$?

Find 4$$\frac{1}{2}$$ - 1$$\frac{4}{5}$$

4$$\frac{1}{2}$$ - 1$$\frac{4}{5}$$ = $$\frac{9}{2}$$ - $$\frac{9}{5}$$            L.C.M. of 2 and 5 is 10.

= $$\frac{45}{10}$$ - $$\frac{18}{10}$$

= $$\frac{45 - 18}{10}$$

= $$\frac{27}{10}$$

= 2$$\frac{7}{10}$$

Questions and Answers on Subtraction of Unlike Fractions:

1. Find the difference:

(i) $$\frac{3}{8}$$ - $$\frac{1}{8}$$

(ii) $$\frac{17}{23}$$ - $$\frac{6}{23}$$

(iii) $$\frac{1}{2}$$ - $$\frac{3}{16}$$

(iv) $$\frac{5}{14}$$ - $$\frac{2}{7}$$

(v) $$\frac{5}{6}$$ - $$\frac{3}{4}$$

(vi) $$\frac{2}{3}$$ - $$\frac{1}{5}$$

(vii) 5 - $$\frac{3}{4}$$

(viii) 2 - $$\frac{15}{21}$$

(ix) 4$$\frac{2}{3}$$ - 2

1. (i) $$\frac{1}{4}$$

(ii) $$\frac{11}{23}$$

(iii) $$\frac{5}{16}$$

(iv) $$\frac{1}{14}$$

(v) $$\frac{1}{12}$$

(vi) $$\frac{7}{15}$$

(vii) $$\frac{17}{4}$$

(viii) $$\frac{27}{21}$$

(ix) 2$$\frac{2}{3}$$

2. Subtract the following Unlike Fractions:

(i) $$\frac{4}{7}$$ - $$\frac{1}{3}$$

(ii) $$\frac{3}{4}$$ - $$\frac{1}{2}$$

(iii) 8 - $$\frac{2}{3}$$

(iv) 1$$\frac{5}{6}$$ - 1$$\frac{1}{2}$$

(v) 4$$\frac{3}{4}$$ - $$\frac{1}{2}$$

(vi) 2$$\frac{1}{3}$$ - 1$$\frac{1}{2}$$

(vii) 13$$\frac{4}{7}$$ - 6

(viii) 7$$\frac{2}{5}$$ - 3$$\frac{1}{2}$$

(ix) $$\frac{9}{2}$$ - 4

(x) $$\frac{2}{5}$$ - $$\frac{3}{10}$$

2. (i) $$\frac{5}{21}$$

(ii) $$\frac{1}{4}$$

(iii) 7$$\frac{1}{3}$$

(iv) $$\frac{1}{3}$$

(v) 4$$\frac{1}{4}$$

(vi) $$\frac{5}{6}$$

(vii) 7$$\frac{4}{7}$$

(viii) 3$$\frac{9}{10}$$

(ix) $$\frac{1}{2}$$

(x) $$\frac{1}{10}$$

## You might like these

• ### Worksheet on Word Problems on Multiplication of Mixed Fractions | Frac

Practice the questions given in the worksheet on word problems on multiplication of mixed fractions. We know to solve the problems on multiplying mixed fractions first we need to convert them

• ### Word Problems on Division of Mixed Fractions | Dividing Fractions

We will discuss here how to solve the word problems on division of mixed fractions or division of mixed numbers. Let us consider some of the examples. 1. The product of two numbers is 18.

• ### Word Problems on Multiplication of Mixed Fractions | Multiplying Fract

We will discuss here how to solve the word problems on multiplication of mixed fractions or multiplication of mixed numbers. Let us consider some of the examples. 1. Aaron had 324 toys. He gave 1/3

• ### Dividing Fractions | How to Divide Fractions? | Divide Two Fractions

We will discuss here about dividing fractions by a whole number, by a fractional number or by another mixed fractional number. First let us recall how to find reciprocal of a fraction

• ### Reciprocal of a Fraction | Multiply the Reciprocal of the Divisor

Here we will learn Reciprocal of a fraction. What is 1/4 of 4? We know that 1/4 of 4 means 1/4 × 4, let us use the rule of repeated addition to find 1/4× 4. We can say that $$\frac{1}{4}$$ is the reciprocal of 4 or 4 is the reciprocal or multiplicative inverse of 1/4

• ### Multiplying Fractions | How to Multiply Fractions? |Multiply Fractions

To multiply two or more fractions, we multiply the numerators of given fractions to find the new numerator of the product and multiply the denominators to get the denominator of the product. To multiply a fraction by a whole number, we multiply the numerator of the fraction

• ### Word Problems on Fraction | Math Fraction Word Problems |Fraction Math

In word problems on fraction we will solve different types of problems on multiplication of fractional numbers and division of fractional numbers.

• ### Subtraction of Fractions having the Same Denominator | Like Fractions

To find the difference between like fractions we subtract the smaller numerator from the greater numerator. In subtraction of fractions having the same denominator, we just need to subtract the numerators of the fractions.

• ### Properties of Addition of Fractions |Commutative Property |Associative

The associative and commutative properties of natural numbers hold good in the case of fractions also.

• ### Addition of Unlike Fractions | Adding Fractions with Different Denomin

To add unlike fractions, we first convert them into like fractions. In order to make a common denominator we find the LCM of all different denominators of the given fractions and then make them equivalent fractions with a common denominator.

• ### Addition of Like Fractions | Adding Fraction (Like Denominators)

To add two or more like fractions we simplify add their numerators. The denominator remains same.

• ### Fractions in Descending Order |Arranging Fractions an Descending Order

We will discuss here how to arrange the fractions in descending order. Solved examples for arranging in descending order: 1. Arrange the following fractions 5/6, 7/10, 11/20 in descending order. First we find the L.C.M. of the denominators of the fractions to make the

• ### Fractions in Ascending Order | Arranging Fractions an Ascending Order

We will discuss here how to arrange the fractions in ascending order. Solved examples for arranging in ascending order: 1. Arrange the following fractions 5/6, 8/9, 2/3 in ascending order. First we find the L.C.M. of the denominators of the fractions to make the denominators

• ### Comparison of Unlike Fractions | Compare Unlike Fractions | Comparing

In comparison of unlike fractions, we change the unlike fractions to like fractions and then compare. To compare two fractions with different numerators and different denominators, we multiply by a number to convert them to like fractions. Let us consider some of the

• ### Comparison of Like Fractions | Comparing Fractions | Like Fractions

Any two like fractions can be compared by comparing their numerators. The fraction with larger numerator is greater than the fraction with smaller numerator, for example $$\frac{7}{13}$$ > $$\frac{2}{13}$$ because 7 > 2. In comparison of like fractions here are some

• ### Changing Fractions|Fraction to Whole or Mixed Number|Improper Fraction

In changing fractions we will discuss how to change fractions from improper fraction to a whole or mixed number, from mixed number to an improper fraction, from whole number into an improper fraction. Changing an improper fraction to a whole number or mixed number:

• ### Comparison of Fractions having the same Numerator|Ordering of Fraction

In comparison of fractions having the same numerator the following rectangular figures having the same lengths are divided in different parts to show different denominators. 3/10 < 3/5 < 3/4 or 3/4 > 3/5 > 3/10 In the fractions having the same numerator, that fraction is

• ### Fraction in Lowest Terms |Reducing Fractions|Fraction in Simplest Form

There are two methods to reduce a given fraction to its simplest form, viz., H.C.F. Method and Prime Factorization Method. If numerator and denominator of a fraction have no common factor other than 1(one), then the fraction is said to be in its simple form or in lowest

• ### Equivalent Fractions | Fractions |Reduced to the Lowest Term |Examples

The fractions having the same value are called equivalent fractions. Their numerator and denominator can be different but, they represent the same part of a whole. We can see the shade portion with respect to the whole shape in the figures from (i) to (viii) In; (i) Shaded

• ### Fraction of a Whole Numbers | Fractional Number |Examples with Picture

Fraction of a whole numbers are explained here with 4 following examples. There are three shapes: (a) circle-shape (b) rectangle-shape and (c) square-shape. Each one is divided into 4 equal parts. One part is shaded, i.e., one-fourth of the shape is shaded and three

Related Concepts

From Subtraction of Unlike Fractions to HOME PAGE