Subtraction of Unlike Fractions

We will learn how to solve subtraction of unlike fractions. In order to subtract unlike fractions first we convert them as like fractions.

To subtract unlike fractions, we first convert them into like fractions. In order to make a common denominator, we find LCM of all the different denominators of given fractions and then make them equivalent fractions with a common denominators.

Let us consider some of the examples of subtracting unlike fractions:

1. Subtract 1/10 from 2/5.

Solution:

2/5 - 1/10

The L.C.M. of the denominators 10 and 5 is 10.

2/5 = (2 × 2)/(5 × 2) = 4/10, (because 10 ÷ 5 = 2)

1/10 = (1 × 1)/(10 × 1) = 1/10, (because 10 ÷ 10 = 1)

Thus, 2/5 - 1/10

= 4/10 - 1/10

= (4 - 1)/10

= 3/10


2. Subtract \(\frac{3}{8}\) from \(\frac{5}{12}\).

Solution:

Let us find the LCM of denominators 8 and 12. LCM is 24.

\(\frac{3}{8}\) = \(\frac{3 × 3}{8 × 3}\) = \(\frac{9}{24}\) and

\(\frac{5}{12}\) = \(\frac{5 × 2}{12 × 2}\) = \(\frac{10}{24}\)

Now, subtract \(\frac{9}{24}\) and \(\frac{10}{24}\).

\(\frac{10}{24}\) - \(\frac{9}{24}\)                                    

= \(\frac{10 - 9}{24}\)

= \(\frac{1}{24}\)

Let us illustrate the above example pictorially as shown below.

Subtraction of Fractions

The whole strip above has 24 equal parts. The fraction \(\frac{5}{12}\) is equal to \(\frac{10}{24}\). So the shaded portion represents \(\frac{10}{24}\). We take away \(\frac{3}{8}\) or \(\frac{9}{24}\) of the above strip. The remaining part represents \(\frac{1}{24}\) of the whole strip.


3. Subtract 4/9 from 5/7.

Solution:

5/7 - 4/9

The L.C.M. of the denominators 9 and 7 is 63.

5/7 = (5 × 9)/(7 × 9) = 45/63, (because 63 ÷ 7 = 9)

4/9 = (4 × 7)/(9 × 7) = 28/63, (because 63 ÷ 9 = 7)

Thus, 5/7 - 4/9

= 45/63 - 28/63

= (45 - 28)/63

= 17/63


4. Subtract 5/8 from 1.

Solution:

1 - 5/8

= 1/1 - 5/8

The L.C.M. of the denominators 1 and 8 is 8.

1/1 = (1 × 8)/(1 × 8) = 8/8, (because 8 ÷ 1 = 8)

5/8 = (5 × 1)/(8 × 1) = 5/8, (because 8 ÷ 8 = 1)

Thus, 1/1 - 5/8

= 8/8 - 5/8

= (8 - 5)/8

= 3/8

 

5. Subtract 19/36 from 23/24.

Solution:

23/24 - 19/36

The L.C.M. of the denominators 24 and 36 is 72.

23/24 = (23 × 3)/(24 × 3) = 69/72, (because 72 ÷ 24 = 3)

19/36 = (19 × 2)/(36 × 2) = 38/72, (because 72 ÷ 36 = 2)

Thus, 23/24 - 19/36

= 69/72 - 38/72

= (69 - 38)/72

= 31/72


6. Subtract 9/35 from 3/7.

Solution:

3/7 - 9/35

The L.C.M. of the denominators 7 and 35 is 35.

3/7 = (3 × 5)/(7 × 5) = 15/35, (because 35 ÷ 7 = 5)

9/35 = (9 × 1)/(35 × 1) = 9/35, (because 35 ÷ 35 = 1)

Thus, 3/7 - 9/35

= 15/35 - 9/35

= (15 - 9)/35

= 6/35 

Subtraction of Unlike Fractions


7. Subtract \(\frac{2}{5}\) from 7.

Solution:

\(\frac{7}{1}\) - \(\frac{2}{5}\)

= \(\frac{7  × 5 - 2 × 1}{5}\) LCM of 1 and 5 is 5

= \(\frac{35 -2}{5}\)

= \(\frac{33}{5}\)

= 6\(\frac{3}{5}\)

Hence, 7 - \(\frac{2}{5}\) = 6\(\frac{3}{5}\)


Note: We write the whole number in the fraction form by keeping 1 in the denominator.


Subtraction of Fractions having the Different Denominator:

8. Subtract \(\frac{2}{3}\) - \(\frac{1}{4}\)

\(\frac{2}{3}\) = \(\frac{8}{12}\) [\(\frac{2 × 4}{3 × 4}\) = \(\frac{8}{12}\)]

\(\frac{1}{4}\) = \(\frac{3}{12}\) [\(\frac{1 × 3}{4 × 3}\) = \(\frac{3}{12}\)]

\(\frac{2}{3}\) - \(\frac{1}{4}\) = \(\frac{8}{12}\) - \(\frac{3}{12}\)

= \(\frac{8 - 3}{12}\)

= \(\frac{5}{12}\)

Method 1:

Step I: Find the L.C.M. of the denominators 3 and 4.

L.C.M. of 3 and 4 is 12

Step II: Write the equivalent fractions of \(\frac{2}{3}\) and \(\frac{1}{4}\) with denominator 12.

Step III: Subtract

Step IV: Write the difference in lowest terms.


9. Subtract \(\frac{5}{6}\) - \(\frac{1}{8}\)

\(\frac{5}{6}\) - \(\frac{1}{8}\) = \(\frac{(24 ÷ 6) × 5 – (24 ÷ 8) × 1}{24}\)

= \(\frac{(4 × 5) – (3 × 1)}{24}\)

= \(\frac{20 - 3}{24}\)

= \(\frac{17}{24}\)


Method 2:

L.C.M. of 6 and 8


Subtraction of Mixed Numbers:

Method I:

Subtract 8\(\frac{1}{2}\) - 3\(\frac{1}{4}\)

8\(\frac{1}{2}\) - 3\(\frac{1}{4}\) = (8 – 3) + [\(\frac{1}{2}\) - \(\frac{1}{4}\)]

= 5 + [\(\frac{1}{2}\) - \(\frac{1}{4}\)]

= 5 + [\(\frac{2}{4}\) - \(\frac{1}{4}\)]

= 5 + \(\frac{1}{4}\)

= 5\(\frac{1}{4}\)

Method II:

Subtract 8\(\frac{1}{2}\) - 3\(\frac{1}{4}\)

L.C.M. of 4 and 2 is 4.

8\(\frac{1}{2}\) - 3\(\frac{1}{4}\) = \(\frac{17}{2}\) - \(\frac{13}{4}\)

= \(\frac{34}{4}\) - \(\frac{13}{4}\)

= \(\frac{34 - 13}{4}\)]

= \(\frac{21}{4}\)

= 5\(\frac{1}{4}\)


2. What is 1\(\frac{4}{5}\) less than 4\(\frac{1}{2}\)?

Find 4\(\frac{1}{2}\) - 1\(\frac{4}{5}\)

4\(\frac{1}{2}\) - 1\(\frac{4}{5}\) = \(\frac{9}{2}\) - \(\frac{9}{5}\)            L.C.M. of 2 and 5 is 10.

             = \(\frac{45}{10}\) - \(\frac{18}{10}\)

             = \(\frac{45 - 18}{10}\)

             = \(\frac{27}{10}\)

            = 2\(\frac{7}{10}\)



Questions and Answers on Subtraction of Unlike Fractions:

1. Find the difference:

(i) \(\frac{3}{8}\) - \(\frac{1}{8}\)

(ii) \(\frac{17}{23}\) - \(\frac{6}{23}\)

(iii) \(\frac{1}{2}\) - \(\frac{3}{16}\)

(iv) \(\frac{5}{14}\) - \(\frac{2}{7}\)

(v) \(\frac{5}{6}\) - \(\frac{3}{4}\)

(vi) \(\frac{2}{3}\) - \(\frac{1}{5}\)

(vii) 5 - \(\frac{3}{4}\)

(viii) 2 - \(\frac{15}{21}\)

(ix) 4\(\frac{2}{3}\) - 2



Answers:

1. (i) \(\frac{1}{4}\)

(ii) \(\frac{11}{23}\)

(iii) \(\frac{5}{16}\)

(iv) \(\frac{1}{14}\)

(v) \(\frac{1}{12}\)

(vi) \(\frac{7}{15}\)

(vii) \(\frac{17}{4}\)

(viii) \(\frac{27}{21}\)

(ix) 2\(\frac{2}{3}\)


2. Subtract the following Unlike Fractions:

(i) \(\frac{4}{7}\) - \(\frac{1}{3}\)

(ii) \(\frac{3}{4}\) - \(\frac{1}{2}\)

(iii) 8 - \(\frac{2}{3}\)

(iv) 1\(\frac{5}{6}\) - 1\(\frac{1}{2}\)

(v) 4\(\frac{3}{4}\) - \(\frac{1}{2}\)

(vi) 2\(\frac{1}{3}\) - 1\(\frac{1}{2}\)

(vii) 13\(\frac{4}{7}\) - 6

(viii) 7\(\frac{2}{5}\) - 3\(\frac{1}{2}\)

(ix) \(\frac{9}{2}\) - 4

(x) \(\frac{2}{5}\) - \(\frac{3}{10}\)


Answer: 

2. (i) \(\frac{5}{21}\)

(ii) \(\frac{1}{4}\) 

(iii) 7\(\frac{1}{3}\)

(iv) \(\frac{1}{3}\)

(v) 4\(\frac{1}{4}\)

(vi) \(\frac{5}{6}\)

(vii) 7\(\frac{4}{7}\)

(viii) 3\(\frac{9}{10}\)

(ix) \(\frac{1}{2}\)

(x) \(\frac{1}{10}\)

 Related Concepts




4th Grade Math Activities

From Subtraction of Unlike Fractions to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 14, 24 02:12 PM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  2. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Dec 14, 24 12:25 PM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More

  3. Patterns in Numbers | Patterns in Maths |Math Patterns|Series Patterns

    Dec 13, 24 08:43 AM

    Complete the Series Patterns
    We see so many patterns around us in our daily life. We know that a pattern is an arrangement of objects, colors, or numbers placed in a certain order. Some patterns neither grow nor reduce but only r…

    Read More

  4. Patterns in Math | Missing Number | Counting Numbers | Worksheets

    Dec 13, 24 12:31 AM

    Finding patterns in math is very important to understand the sequence in the series. We need to find the exact missing number that from the group of numbers. The counting numbers may be counting

    Read More

  5. Concept of Pattern | Similar Patterns in Mathematics | Similar Pattern

    Dec 12, 24 11:22 PM

    Patterns in Necklace
    Concept of pattern will help us to learn the basic number patterns and table patterns. Animals such as all cows, all lions, all dogs and all other animals have dissimilar features. All mangoes have si…

    Read More