Subtraction of Unlike Fractions

We will learn how to solve subtraction of unlike fractions. In order to subtract unlike fractions first we convert them as like fractions.

To subtract unlike fractions, we first convert them into like fractions. In order to make a common denominator, we find LCM of all the different denominators of given fractions and then make them equivalent fractions with a common denominators.

Let us consider some of the examples of subtracting unlike fractions:

1. Subtract 1/10 from 2/5.

Solution:

2/5 - 1/10

The L.C.M. of the denominators 10 and 5 is 10.

2/5 = (2 × 2)/(5 × 2) = 4/10, (because 10 ÷ 5 = 2)

1/10 = (1 × 1)/(10 × 1) = 1/10, (because 10 ÷ 10 = 1)

Thus, 2/5 - 1/10

= 4/10 - 1/10

= (4 - 1)/10

= 3/10


2. Subtract \(\frac{3}{8}\) from \(\frac{5}{12}\).

Solution:

Let us find the LCM of denominators 8 and 12. LCM is 24.

\(\frac{3}{8}\) = \(\frac{3 × 3}{8 × 3}\) = \(\frac{9}{24}\) and

\(\frac{5}{12}\) = \(\frac{5 × 2}{12 × 2}\) = \(\frac{10}{24}\)

Now, subtract \(\frac{9}{24}\) and \(\frac{10}{24}\).

\(\frac{10}{24}\) - \(\frac{9}{24}\)                                    

= \(\frac{10 - 9}{24}\)

= \(\frac{1}{24}\)

Let us illustrate the above example pictorially as shown below.

Subtraction of Fractions

The whole strip above has 24 equal parts. The fraction \(\frac{5}{12}\) is equal to \(\frac{10}{24}\). So the shaded portion represents \(\frac{10}{24}\). We take away \(\frac{3}{8}\) or \(\frac{9}{24}\) of the above strip. The remaining part represents \(\frac{1}{24}\) of the whole strip.


3. Subtract 4/9 from 5/7.

Solution:

5/7 - 4/9

The L.C.M. of the denominators 9 and 7 is 63.

5/7 = (5 × 9)/(7 × 9) = 45/63, (because 63 ÷ 7 = 9)

4/9 = (4 × 7)/(9 × 7) = 28/63, (because 63 ÷ 9 = 7)

Thus, 5/7 - 4/9

= 45/63 - 28/63

= (45 - 28)/63

= 17/63


4. Subtract 5/8 from 1.

Solution:

1 - 5/8

= 1/1 - 5/8

The L.C.M. of the denominators 1 and 8 is 8.

1/1 = (1 × 8)/(1 × 8) = 8/8, (because 8 ÷ 1 = 8)

5/8 = (5 × 1)/(8 × 1) = 5/8, (because 8 ÷ 8 = 1)

Thus, 1/1 - 5/8

= 8/8 - 5/8

= (8 - 5)/8

= 3/8

 

5. Subtract 19/36 from 23/24.

Solution:

23/24 - 19/36

The L.C.M. of the denominators 24 and 36 is 72.

23/24 = (23 × 3)/(24 × 3) = 69/72, (because 72 ÷ 24 = 3)

19/36 = (19 × 2)/(36 × 2) = 38/72, (because 72 ÷ 36 = 2)

Thus, 23/24 - 19/36

= 69/72 - 38/72

= (69 - 38)/72

= 31/72


6. Subtract 9/35 from 3/7.

Solution:

3/7 - 9/35

The L.C.M. of the denominators 7 and 35 is 35.

3/7 = (3 × 5)/(7 × 5) = 15/35, (because 35 ÷ 7 = 5)

9/35 = (9 × 1)/(35 × 1) = 9/35, (because 35 ÷ 35 = 1)

Thus, 3/7 - 9/35

= 15/35 - 9/35

= (15 - 9)/35

= 6/35 

Subtraction of Unlike Fractions


7. Subtract \(\frac{2}{5}\) from 7.

Solution:

\(\frac{7}{1}\) - \(\frac{2}{5}\)

= \(\frac{7  × 5 - 2 × 1}{5}\) LCM of 1 and 5 is 5

= \(\frac{35 -2}{5}\)

= \(\frac{33}{5}\)

= 6\(\frac{3}{5}\)

Hence, 7 - \(\frac{2}{5}\) = 6\(\frac{3}{5}\)


Note: We write the whole number in the fraction form by keeping 1 in the denominator.


Subtraction of Fractions having the Different Denominator:

8. Subtract \(\frac{2}{3}\) - \(\frac{1}{4}\)

\(\frac{2}{3}\) = \(\frac{8}{12}\) [\(\frac{2 × 4}{3 × 4}\) = \(\frac{8}{12}\)]

\(\frac{1}{4}\) = \(\frac{3}{12}\) [\(\frac{1 × 3}{4 × 3}\) = \(\frac{3}{12}\)]

\(\frac{2}{3}\) - \(\frac{1}{4}\) = \(\frac{8}{12}\) - \(\frac{3}{12}\)

= \(\frac{8 - 3}{12}\)

= \(\frac{5}{12}\)

Method 1:

Step I: Find the L.C.M. of the denominators 3 and 4.

L.C.M. of 3 and 4 is 12

Step II: Write the equivalent fractions of \(\frac{2}{3}\) and \(\frac{1}{4}\) with denominator 12.

Step III: Subtract

Step IV: Write the difference in lowest terms.


9. Subtract \(\frac{5}{6}\) - \(\frac{1}{8}\)

\(\frac{5}{6}\) - \(\frac{1}{8}\) = \(\frac{(24 ÷ 6) × 5 – (24 ÷ 8) × 1}{24}\)

= \(\frac{(4 × 5) – (3 × 1)}{24}\)

= \(\frac{20 - 3}{24}\)

= \(\frac{17}{24}\)


Method 2:

L.C.M. of 6 and 8


Subtraction of Mixed Numbers:

Method I:

Subtract 8\(\frac{1}{2}\) - 3\(\frac{1}{4}\)

8\(\frac{1}{2}\) - 3\(\frac{1}{4}\) = (8 – 3) + [\(\frac{1}{2}\) - \(\frac{1}{4}\)]

= 5 + [\(\frac{1}{2}\) - \(\frac{1}{4}\)]

= 5 + [\(\frac{2}{4}\) - \(\frac{1}{4}\)]

= 5 + \(\frac{1}{4}\)

= 5\(\frac{1}{4}\)

Method II:

Subtract 8\(\frac{1}{2}\) - 3\(\frac{1}{4}\)

L.C.M. of 4 and 2 is 4.

8\(\frac{1}{2}\) - 3\(\frac{1}{4}\) = \(\frac{17}{2}\) - \(\frac{13}{4}\)

= \(\frac{34}{4}\) - \(\frac{13}{4}\)

= \(\frac{34 - 13}{4}\)]

= \(\frac{21}{4}\)

= 5\(\frac{1}{4}\)


2. What is 1\(\frac{4}{5}\) less than 4\(\frac{1}{2}\)?

Find 4\(\frac{1}{2}\) - 1\(\frac{4}{5}\)

4\(\frac{1}{2}\) - 1\(\frac{4}{5}\) = \(\frac{9}{2}\) - \(\frac{9}{5}\)            L.C.M. of 2 and 5 is 10.

             = \(\frac{45}{10}\) - \(\frac{18}{10}\)

             = \(\frac{45 - 18}{10}\)

             = \(\frac{27}{10}\)

            = 2\(\frac{7}{10}\)



Questions and Answers on Subtraction of Unlike Fractions:

1. Find the difference:

(i) \(\frac{3}{8}\) - \(\frac{1}{8}\)

(ii) \(\frac{17}{23}\) - \(\frac{6}{23}\)

(iii) \(\frac{1}{2}\) - \(\frac{3}{16}\)

(iv) \(\frac{5}{14}\) - \(\frac{2}{7}\)

(v) \(\frac{5}{6}\) - \(\frac{3}{4}\)

(vi) \(\frac{2}{3}\) - \(\frac{1}{5}\)

(vii) 5 - \(\frac{3}{4}\)

(viii) 2 - \(\frac{15}{21}\)

(ix) 4\(\frac{2}{3}\) - 2



Answers:

1. (i) \(\frac{1}{4}\)

(ii) \(\frac{11}{23}\)

(iii) \(\frac{5}{16}\)

(iv) \(\frac{1}{14}\)

(v) \(\frac{1}{12}\)

(vi) \(\frac{7}{15}\)

(vii) \(\frac{17}{4}\)

(viii) \(\frac{27}{21}\)

(ix) 2\(\frac{2}{3}\)


2. Subtract the following Unlike Fractions:

(i) \(\frac{4}{7}\) - \(\frac{1}{3}\)

(ii) \(\frac{3}{4}\) - \(\frac{1}{2}\)

(iii) 8 - \(\frac{2}{3}\)

(iv) 1\(\frac{5}{6}\) - 1\(\frac{1}{2}\)

(v) 4\(\frac{3}{4}\) - \(\frac{1}{2}\)

(vi) 2\(\frac{1}{3}\) - 1\(\frac{1}{2}\)

(vii) 13\(\frac{4}{7}\) - 6

(viii) 7\(\frac{2}{5}\) - 3\(\frac{1}{2}\)

(ix) \(\frac{9}{2}\) - 4

(x) \(\frac{2}{5}\) - \(\frac{3}{10}\)


Answer: 

2. (i) \(\frac{5}{21}\)

(ii) \(\frac{1}{4}\) 

(iii) 7\(\frac{1}{3}\)

(iv) \(\frac{1}{3}\)

(v) 4\(\frac{1}{4}\)

(vi) \(\frac{5}{6}\)

(vii) 7\(\frac{4}{7}\)

(viii) 3\(\frac{9}{10}\)

(ix) \(\frac{1}{2}\)

(x) \(\frac{1}{10}\)

 Related Concepts




4th Grade Math Activities

From Subtraction of Unlike Fractions to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 5th Grade Circle Worksheet | Free Worksheet with Answer |Practice Math

    Jul 11, 25 02:14 PM

    Radii of the circRadii, Chords, Diameters, Semi-circles
    In 5th Grade Circle Worksheet you will get different types of questions on parts of a circle, relation between radius and diameter, interior of a circle, exterior of a circle and construction of circl…

    Read More

  2. Construction of a Circle | Working Rules | Step-by-step Explanation |

    Jul 09, 25 01:29 AM

    Parts of a Circle
    Construction of a Circle when the length of its Radius is given. Working Rules | Step I: Open the compass such that its pointer be put on initial point (i.e. O) of ruler / scale and the pencil-end be…

    Read More

  3. Combination of Addition and Subtraction | Mixed Addition & Subtraction

    Jul 08, 25 02:32 PM

    Add and Sub
    We will discuss here about the combination of addition and subtraction. The rules which can be used to solve the sums involving addition (+) and subtraction (-) together are: I: First add

    Read More

  4. Addition & Subtraction Together |Combination of addition & subtraction

    Jul 08, 25 02:23 PM

    Addition and Subtraction Together Problem
    We will solve the different types of problems involving addition and subtraction together. To show the problem involving both addition and subtraction, we first group all the numbers with ‘+’ and…

    Read More

  5. 5th Grade Circle | Radius, Interior and Exterior of a Circle|Worksheet

    Jul 08, 25 09:55 AM

    Semi-circular Region
    A circle is the set of all those point in a plane whose distance from a fixed point remains constant. The fixed point is called the centre of the circle and the constant distance is known

    Read More