Fractions in Descending Order

We will discuss here how to arrange the fractions in descending order.

Solved examples for arranging in descending order:

1. Arrange the following fractions \(\frac{5}{6}\), \(\frac{7}{10}\), \(\frac{11}{20}\) in descending order.

First we find the L.C.M. of the denominators of the fractions to make the denominators same.

L.C.M. of 6, 10 and 20

L.C.M. of 6, 10 and 20 = 2 × 5 × 3 × 1 × 2 = 60

\(\frac{5}{6}\) = \(\frac{5 × 10}{6 × 10}\) = \(\frac{50}{60}\) (because 60 ÷ 6 = 10)

\(\frac{7}{10}\) = \(\frac{7 × 6}{10 × 6}\) = \(\frac{42}{60}\) (because 60 ÷ 10 = 6)

\(\frac{11}{20}\) = \(\frac{11 × 3}{20 × 3}\) = \(\frac{33}{60}\) (because 60 ÷ 20 = 3)

Now we compare the like fractions \(\frac{50}{60}\), \(\frac{42}{60}\)  and \(\frac{33}{60}\) 

Comparing numerators, we find that 50 > 42 > 33.

Therefore, \(\frac{50}{60}\) > \(\frac{42}{60}\) > \(\frac{33}{60}\) or \(\frac{5}{6}\) > \(\frac{7}{10}\) > \(\frac{11}{20}\)

The descending order of the fractions is \(\frac{5}{6}\), \(\frac{7}{10}\), \(\frac{11}{20}\).


2. Arrange the following fractions \(\frac{1}{2}\), \(\frac{3}{4}\), \(\frac{7}{8}\), \(\frac{5}{12}\) in descending order.

First we find the L.C.M. of the denominators of the fractions to make the denominators same.

L.C.M. of 2, 4, 8 and 12 = 24

\(\frac{1}{2}\) = \(\frac{1 × 12}{2 × 12}\) = \(\frac{12}{24}\) (because 24 ÷ 2 = 12)

\(\frac{3}{4}\) = \(\frac{3 × 6}{4 × 6}\) = \(\frac{18}{24}\) (because 24 ÷ 10 = 6)

\(\frac{7}{8}\) = \(\frac{7 × 3}{8 × 3}\) = \(\frac{21}{24}\) (because 24 ÷ 20 = 3)

\(\frac{5}{12}\) = \(\frac{5 × 2}{12 × 2}\) = \(\frac{10}{24}\) (because 24 ÷ 20 = 3)

Now we compare the like fractions \(\frac{12}{24}\), \(\frac{18}{24}\), \(\frac{21}{24}\) and \(\frac{10}{24}\).

Comparing numerators, we find that 21 > 18 > 12 > 10.

Therefore, \(\frac{21}{24}\) > \(\frac{18}{24}\) > \(\frac{12}{24}\) > \(\frac{10}{24}\) or \(\frac{7}{8}\) > \(\frac{3}{4}\) > \(\frac{1}{2}\) > \(\frac{5}{12}\)

The descending order of the fractions is \(\frac{7}{8}\) > \(\frac{3}{4}\) > \(\frac{1}{2}\) > \(\frac{5}{12}\).


3. Arrange the following fractions in descending order of magnitude.

\(\frac{3}{4}\), \(\frac{5}{8}\), \(\frac{4}{6}\), \(\frac{2}{9}\)

L.C.M. of 4, 8, 6 and 9

= 2 × 2 × 3 × 2 × 3 = 72

Arrange the Following Fractions

\(\frac{3 × 18}{4 × 18}\) = \(\frac{54}{72}\)

Therefore, \(\frac{3}{4}\) = \(\frac{54}{72}\)

\(\frac{5 × 9}{8 × 9}\) = \(\frac{45}{72}\)

Therefore, \(\frac{5}{8}\) = \(\frac{45}{72}\)

\(\frac{4 × 12}{6 × 12}\) = \(\frac{48}{72}\)

Therefore, \(\frac{4}{6}\) = \(\frac{48}{72}\)

\(\frac{2 × 8}{9 × 8}\) = \(\frac{16}{72}\)

Therefore, \(\frac{2}{9}\) = \(\frac{16}{72}\)  

Descending order: \(\frac{54}{72}\), \(\frac{48}{72}\), \(\frac{45}{72}\), \(\frac{16}{72}\)

i.e., \(\frac{3}{4}\), \(\frac{4}{6}\), \(\frac{5}{8}\), \(\frac{2}{9}\)


4. Arrange the following fractions in descending order of magnitude.

4\(\frac{1}{2}\), 3\(\frac{1}{2}\), 5\(\frac{1}{4}\), 1\(\frac{1}{6}\), 2\(\frac{1}{4}\)

Observe the whole numbers.

4, 3, 5, 1, 2

1 < 2 < 3 < 4 < 5

Therefore, descending order: 5\(\frac{1}{4}\), 4\(\frac{1}{2}\), 3\(\frac{1}{2}\), 2\(\frac{1}{4}\), 1\(\frac{1}{6}\)

 

5. Arrange the following fractions in descending order of magnitude.

3\(\frac{1}{4}\), 3\(\frac{1}{2}\), 2\(\frac{1}{6}\), 4\(\frac{1}{4}\), 8\(\frac{1}{9}\)

Observe the whole numbers.

3, 3, 2, 4, 8

Since the whole number part of 3\(\frac{1}{4}\) and 3\(\frac{1}{2}\) are same, compare them.

Which is bigger? 3\(\frac{1}{4}\) or 3\(\frac{1}{2}\)? \(\frac{1}{4}\) or \(\frac{1}{2}\)?

L.C.M. of 4, 2 = 4

\(\frac{1 × 1}{4 × 1}\) = \(\frac{1}{4}\)                 \(\frac{1 × 2}{2 × 2}\) = \(\frac{2}{4}\)

Therefore, 3\(\frac{1}{4}\) = 3\(\frac{1}{4}\)       3\(\frac{1}{2}\) = 3\(\frac{2}{4}\)

Therefore, 3\(\frac{2}{4}\) > 3\(\frac{1}{4}\)       i.e., 3\(\frac{1}{2}\) > 3\(\frac{1}{4}\)

Therefore, descending order: 8\(\frac{1}{9}\), 4\(\frac{3}{4}\), 3\(\frac{1}{2}\), 3\(\frac{1}{4}\), 2\(\frac{1}{6}\)


Worksheet on Fractions in Descending Order:

Comparison of Like Fractions:

1. Arrange the given fractions in descending order:

(i) \(\frac{7}{27}\), \(\frac{10}{27}\), \(\frac{18}{27}\), \(\frac{21}{27}\)

(ii) \(\frac{15}{39}\), \(\frac{7}{39}\), \(\frac{10}{39}\), \(\frac{26}{39}\)


Answers:

1. (i) \(\frac{21}{27}\), \(\frac{18}{27}\), \(\frac{10}{27}\), \(\frac{7}{27}\)

(ii) \(\frac{26}{39}\), \(\frac{15}{39}\), \(\frac{10}{39}\), \(\frac{7}{39}\)


2. Arrange the following fractions in descending order of magnitude:

(i) \(\frac{5}{23}\), \(\frac{12}{23}\), \(\frac{4}{23}\), \(\frac{17}{23}\), \(\frac{45}{23}\), \(\frac{36}{23}\)

(ii) \(\frac{13}{17}\), \(\frac{12}{17}\), \(\frac{11}{17}\), \(\frac{16}{17}\)


Answers:

2. (i) \(\frac{45}{23}\), \(\frac{36}{23}\), \(\frac{17}{23}\), \(\frac{12}{23}\), \(\frac{5}{23}\)

(ii) \(\frac{16}{17}\) > \(\frac{13}{17}\) > \(\frac{12}{17}\) > \(\frac{11}{17}\)


Comparison of Unlike Fractions:

3. Arrange the following fractions in descending order:

(i) \(\frac{1}{6}\), \(\frac{5}{12}\), \(\frac{2}{3}\), \(\frac{5}{18}\)

(ii) \(\frac{3}{4}\), \(\frac{2}{3}\), \(\frac{4}{3}\), \(\frac{6}{4}\), \(\frac{1}{2}\), \(\frac{1}{4}\)

(iⅲ) \(\frac{3}{6}\), \(\frac{3}{4}\), \(\frac{3}{5}\), \(\frac{3}{8}\)

(iv) \(\frac{4}{7}\), \(\frac{6}{7}\), \(\frac{3}{14}\), \(\frac{5}{21}\)


Answers:

3. (1) \(\frac{2}{3}\) > \(\frac{5}{12}\) > \(\frac{5}{18}\) > \(\frac{1}{6}\)

(ii) \(\frac{6}{4}\) > \(\frac{4}{3}\) > \(\frac{3}{4}\) > \(\frac{2}{3}\) > \(\frac{1}{2}\) > \(\frac{1}{4}\)

(iⅲ) \(\frac{3}{4}\) > \(\frac{3}{5}\) > \(\frac{3}{6}\) > \(\frac{3}{8}\)

(iv) \(\frac{6}{7}\) > \(\frac{4}{7}\) > \(\frac{5}{21}\) > \(\frac{3}{14}\)



You might like these

Related Concept

Fraction of a Whole Numbers

Representation of a Fraction

Equivalent Fractions

Properties of Equivalent Fractions

Like and Unlike Fractions

Comparison of Like Fractions

Comparison of Fractions having the same Numerator

Types of Fractions

Changing Fractions

Conversion of Fractions into Fractions having Same Denominator

Conversion of a Fraction into its Smallest and Simplest Form

Addition of Fractions having the Same Denominator

Subtraction of Fractions having the Same Denominator

Addition and Subtraction of Fractions on the Fraction Number Line




4th Grade Math Activities

From Fractions in Descending Order to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Patterns in Numbers | Patterns in Maths |Math Patterns|Series Patterns

    Dec 13, 24 08:43 AM

    Complete the Series Patterns
    We see so many patterns around us in our daily life. We know that a pattern is an arrangement of objects, colors, or numbers placed in a certain order. Some patterns neither grow nor reduce but only r…

    Read More

  2. Patterns in Math | Missing Number | Counting Numbers | Worksheets

    Dec 13, 24 12:31 AM

    Finding patterns in math is very important to understand the sequence in the series. We need to find the exact missing number that from the group of numbers. The counting numbers may be counting

    Read More

  3. Concept of Pattern | Similar Patterns in Mathematics | Similar Pattern

    Dec 12, 24 11:22 PM

    Patterns in Necklace
    Concept of pattern will help us to learn the basic number patterns and table patterns. Animals such as all cows, all lions, all dogs and all other animals have dissimilar features. All mangoes have si…

    Read More

  4. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 12, 24 10:31 PM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  5. Types of Lines |Straight Lines|Curved Lines|Horizontal Lines| Vertical

    Dec 09, 24 10:39 PM

    Types of Lines
    What are the different types of lines? There are two different kinds of lines. (i) Straight line and (ii) Curved line. There are three different types of straight lines. (i) Horizontal lines, (ii) Ver…

    Read More