# Fractions in Descending Order

We will discuss here how to arrange the fractions in descending order.

Solved examples for arranging in descending order:

1. Arrange the following fractions 5/6, 7/10, 11/20 in descending order.

First we find the L.C.M. of the denominators of the fractions to make the denominators same.

L.C.M. of 6, 10 and 20 = 2 × 5 × 3 × 1 × 2 = 60

5/6 = 5 × 10/6 × 10 = 50/60 (because 60 ÷ 6 = 10)

7/10 = 7 × 6/10 × 6 = 42/60 (because 60 ÷ 10 = 6)

11/20 = 11 × 3/20 × 3 = 33/60 (because 60 ÷ 20 = 3)

Now we compare the like fractions 50/60, 42/60 and 33/60

Comparing numerators, we find that 50 > 42 > 33.

Therefore, 50/60 > 42/60 > 33/60 or 5/6 > 7/10 > 11/20

The descending order of the fractions is 5/6, 7/10, 11/20.

2. Arrange the following fractions 1/2, 3/4, 7/8, 5/12 in descending order.

First we find the L.C.M. of the denominators of the fractions to make the denominators same.

L.C.M. of 2, 4, 8 and 12 = 24

1/2 = 1 × 12/2 × 12 = 12/24 (because 24 ÷ 2 = 12)

3/4 = 3 × 6/4 × 6 = 18/24 (because 24 ÷ 10 = 6)

7/8 = 7 × 3/8 × 3 = 21/24 (because 24 ÷ 20 = 3)

5/12 = 5 × 2/12 × 2 = 10/24 (because 24 ÷ 20 = 3)

Now we compare the like fractions 12/24, 18/24, 21/24 and 10/24.

Comparing numerators, we find that 21 > 18 > 12 > 10.

Therefore, 21/24 > 18/24 > 12/24 > 10/24 or 7/8 > 3/4 > 1/2 > 5/12

The descending order of the fractions is 7/8 > 3/4 > 1/2 > 5/12.

Questions and Answers on Comparison of Like Fractions:

1. Arrange the given fractions in descending order: (i) $$\frac{7}{27}$$, $$\frac{10}{27}$$, $$\frac{18}{27}$$, $$\frac{21}{27}$$ (ii) $$\frac{15}{39}$$, $$\frac{7}{39}$$, $$\frac{10}{39}$$, $$\frac{26}{39}$$

1. (i) $$\frac{21}{27}$$, $$\frac{18}{27}$$, $$\frac{10}{27}$$, $$\frac{7}{27}$$

(ii) $$\frac{26}{39}$$, $$\frac{15}{39}$$, $$\frac{10}{39}$$, $$\frac{7}{39}$$

## You might like these

• ### Fractions in Ascending Order | Arranging Fractions an Ascending Order

We will discuss here how to arrange the fractions in ascending order. Solved examples for arranging in ascending order: 1. Arrange the following fractions 5/6, 8/9, 2/3 in ascending order. First we find the L.C.M. of the denominators of the fractions to make the denominators

• ### Equivalent Fractions | Fractions |Reduced to the Lowest Term |Examples

The fractions having the same value are called equivalent fractions. Their numerator and denominator can be different but, they represent the same part of a whole. We can see the shade portion with respect to the whole shape in the figures from (i) to (viii) In; (i) Shaded

Related Concept