We will discuss here how to arrange the fractions in
descending** **order.

Solved examples for arranging in descending order:

1. Arrange the following fractions 5/6, 7/10, 11/20 in descending order.

First we find the L.C.M. of the denominators of the fractions to make the denominators same.

L.C.M. of 6, 10 and 20 = 2 × 5 × 3 × 1 × 2 = 60

5/6 = 5 × 10/6 × 10 = 50/60 (because 60 ÷ 6 = 10)

7/10 = 7 × 6/10 × 6 = 42/60 (because 60 ÷ 10 = 6)

11/20 = 11 × 3/20 × 3 = 33/60 (because 60 ÷ 20 = 3)

Now we compare the like fractions 50/60, 42/60 and 33/60

Comparing numerators, we find that 50 > 42 > 33.

Therefore, 50/60 > 42/60 > 33/60 or 5/6 > 7/10 > 11/20

The descending order of the fractions is 5/6, 7/10, 11/20.

**2.** Arrange the following fractions 1/2, 3/4, 7/8, 5/12 in
descending order.

First we find the L.C.M. of the denominators of the fractions to make the denominators same.

L.C.M. of 2, 4, 8 and 12 = 24

1/2 = 1 × 12/2 × 12 = 12/24 (because 24 ÷ 2 = 12)

3/4 = 3 × 6/4 × 6 = 18/24 (because 24 ÷ 10 = 6)

7/8 = 7 × 3/8 × 3 = 21/24 (because 24 ÷ 20 = 3)

5/12 = 5 × 2/12 × 2 = 10/24 (because 24 ÷ 20 = 3)

Now we compare the like fractions 12/24, 18/24, 21/24 and 10/24.

Comparing numerators, we find that 21 > 18 > 12 > 10.

Therefore, 21/24 > 18/24 > 12/24 > 10/24 or 7/8 > 3/4 > 1/2 > 5/12

The descending order of the fractions is 7/8 > 3/4 > 1/2 > 5/12.

**Related Concept**

● Representation of a Fraction

● Properties of Equivalent Fractions

● Comparison of Like Fractions

● Comparison of Fractions having the same Numerator

● Conversion of Fractions into Fractions having Same Denominator

● Conversion of a Fraction into its Smallest and Simplest Form

● Addition of Fractions having the Same Denominator

● Subtraction of Fractions having the Same Denominator

● Addition and Subtraction of Fractions on the Fraction Number Line

**4th Grade Math Activities**

**From Fractions in Descending Order to HOME PAGE**

**Didn't find what you were looking for? Or want to know more information
about Math Only Math.
Use this Google Search to find what you need.**

## New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.