Verification of Equivalent Fractions

We will discuss here about verification of equivalent fractions. To verify that two fractions are equivalent or not, we multiply the numerator of one fraction by the denominator of the other fraction. Similarly, we multiply the denominator of one fraction by the numerator of the other fraction. If the products obtained, are the same, the fractions are equivalent.


Checking for Equivalence of Two Fractions:

We can check whether the two fractions are equivalent or not by cross multiplication.

If two fractions are equivalent, then

Numerator of the first Γ— Denominator of the second = Denominator of the first Numerator of the second.

In other words, if fractions \(\frac{a}{b}\) and \(\frac{c}{d}\) are equivalent,

i.e., \(\frac{a}{b}\) = \(\frac{c}{d}\), then ad = cb

Consider the following examples.

1: Check whether the given fractions are equivalent or not:

(i) \(\frac{3}{5}\), \(\frac{6}{10}\)

(ii) \(\frac{5}{11}\), \(\frac{20}{33}\)

Solution:

(i) By cross multiplication, we have 3 Γ— 10 = 30 and 5 Γ— 6 = 30

Since two products are the same, the given fractions are equivalent.


(ii) By cross multiplication, we have 5 Γ— 33 = 165 and 11 Γ— 20 = 220

Since two products are not the same, the given fractions are not equivalent.


2. Test whether \(\frac{4}{9}\) and \(\frac{8}{18}\) are equivalent or not.

Verification of Equivalent Fractions



Here, 4 Γ— 18 = 72              

(The product of the numerator of the first fraction and the denominator of the other)

9 Γ— 8 = 72                        

(The product of the denominator of the first fraction and the numerator of the other)

Thus, \(\frac{4}{9}\) and \(\frac{8}{18}\) are equivalent fractions.

We can also verify equivalent fractions by reducing them to their lowest terms.


3. Verifying equivalent fractions:

Consider two fractions \(\frac{3}{4}\) and \(\frac{9}{12}\).

Find the cross product as shown below.

Verifying Equivalent Fractions

3 Γ— 12 Multiply the numerator of \(\frac{3}{4}\) by the denominator of \(\frac{9}{12}\)

4 Γ— 9 Multiply the denominator of \(\frac{3}{4}\) by the numerator of \(\frac{9}{12}\)

We get 3 Γ— 12 = 4 Γ— 9

              36    =    36

Hence, the two fractions are equivalent if their cross products are equal.


4. Verify if \(\frac{2}{3}\) and \(\frac{8}{12}\) are equivalent.

Verify Equivalent Fractions

Multiplying numbers across fractions. 2 Γ— 12 = 24 and 3 Γ— 8 = 24 both the products are equal. Hence, \(\frac{2}{3}\) and \(\frac{8}{12}\) are equivalent fractions.


5. Verify if \(\frac{2}{3}\) and \(\frac{4}{5}\) are equivalent.

Equivalent Fractions Verify

Multiplying numbers across fractions. 2 Γ— 5 = 10 and 3 Γ— 4 = 12 Cross products are not equal. Hence, \(\frac{2}{3}\) and \(\frac{4}{5}\) are not equivalent fractions.


6. Test whether \(\frac{2}{3}\), \(\frac{10}{15}\) and \(\frac{22}{33}\) are equivalent or not.

We express the above fractions to their lowest terms.

\(\frac{2}{3}\) is itself in its lowest terms.   (The H.C.F. of 2 and 3 is 1)

\(\frac{10}{15}\) = \(\frac{10 Γ· 5}{15 Γ· 5}\) = \(\frac{2}{3}\) and \(\frac{22}{33}\) = \(\frac{22 Γ· 11}{33 Γ· 11}\) = \(\frac{2}{3}\)

Because \(\frac{2}{3}\), \(\frac{10}{15}\) and \(\frac{22}{33}\) have the same value. So, they are equivalent fractions.



You might like these

Related Concept

● Fraction of a Whole Numbers

● Representation of a Fraction

● Equivalent Fractions

● Properties of Equivalent Fractions

● Like and Unlike Fractions

● Comparison of Like Fractions

● Comparison of Fractions having the same Numerator

● Types of Fractions

● Changing Fractions

● Conversion of Fractions into Fractions having Same Denominator

● Conversion of a Fraction into its Smallest and Simplest Form

● Addition of Fractions having the Same Denominator

● Subtraction of Fractions having the Same Denominator

● Addition and Subtraction of Fractions on the Fraction Number Line





4th Grade Math Activities

From Verification of Equivalent Fractions to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Formation of Square and Rectangle | Construction of Square & Rectangle

    Jul 16, 25 02:45 AM

    Construction of a Square
    In formation of square and rectangle we will learn how to construct square and rectangle. Construction of a Square: We follow the method given below. Step I: We draw a line segment AB of the required…

    Read More

  2. Perimeter of a Figure | Perimeter of a Simple Closed Figure | Examples

    Jul 16, 25 02:33 AM

    Perimeter of a Figure
    Perimeter of a figure is explained here. Perimeter is the total length of the boundary of a closed figure. The perimeter of a simple closed figure is the sum of the measures of line-segments which hav…

    Read More

  3. Formation of Numbers | Smallest and Greatest Number| Number Formation

    Jul 15, 25 11:46 AM

    In formation of numbers we will learn the numbers having different numbers of digits. We know that: (i) Greatest number of one digit = 9,

    Read More

  4. 5th Grade Quadrilaterals | Square | Rectangle | Parallelogram |Rhombus

    Jul 15, 25 02:01 AM

    Square
    Quadrilaterals are known as four sided polygon.What is a quadrilateral? A closed figure made of our line segments is called a quadrilateral. For example:

    Read More

  5. 5th Grade Geometry Practice Test | Angle | Triangle | Circle |Free Ans

    Jul 14, 25 01:53 AM

    Name the Angles
    In 5th grade geometry practice test you will get different types of practice questions on lines, types of angle, triangles, properties of triangles, classification of triangles, construction of triang…

    Read More