Verification of Equivalent Fractions

We will discuss here about verification of equivalent fractions. To verify that two fractions are equivalent or not, we multiply the numerator of one fraction by the denominator of the other fraction. Similarly, we multiply the denominator of one fraction by the numerator of the other fraction. If the products obtained, are the same, the fractions are equivalent.


Checking for Equivalence of Two Fractions:

We can check whether the two fractions are equivalent or not by cross multiplication.

If two fractions are equivalent, then

Numerator of the first × Denominator of the second = Denominator of the first Numerator of the second.

In other words, if fractions \(\frac{a}{b}\) and \(\frac{c}{d}\) are equivalent,

i.e., \(\frac{a}{b}\) = \(\frac{c}{d}\), then ad = cb

Consider the following examples.

1: Check whether the given fractions are equivalent or not:

(i) \(\frac{3}{5}\), \(\frac{6}{10}\)

(ii) \(\frac{5}{11}\), \(\frac{20}{33}\)

Solution:

(i) By cross multiplication, we have 3 × 10 = 30 and 5 × 6 = 30

Since two products are the same, the given fractions are equivalent.


(ii) By cross multiplication, we have 5 × 33 = 165 and 11 × 20 = 220

Since two products are not the same, the given fractions are not equivalent.


2. Test whether \(\frac{4}{9}\) and \(\frac{8}{18}\) are equivalent or not.

Verification of Equivalent Fractions



Here, 4 × 18 = 72              

(The product of the numerator of the first fraction and the denominator of the other)

9 × 8 = 72                        

(The product of the denominator of the first fraction and the numerator of the other)

Thus, \(\frac{4}{9}\) and \(\frac{8}{18}\) are equivalent fractions.

We can also verify equivalent fractions by reducing them to their lowest terms.


3. Verifying equivalent fractions:

Consider two fractions \(\frac{3}{4}\) and \(\frac{9}{12}\).

Find the cross product as shown below.

Verifying Equivalent Fractions

3 × 12 Multiply the numerator of \(\frac{3}{4}\) by the denominator of \(\frac{9}{12}\)

4 × 9 Multiply the denominator of \(\frac{3}{4}\) by the numerator of \(\frac{9}{12}\)

We get 3 × 12 = 4 × 9

              36    =    36

Hence, the two fractions are equivalent if their cross products are equal.


4. Verify if \(\frac{2}{3}\) and \(\frac{8}{12}\) are equivalent.

Verify Equivalent Fractions

Multiplying numbers across fractions. 2 × 12 = 24 and 3 × 8 = 24 both the products are equal. Hence, \(\frac{2}{3}\) and \(\frac{8}{12}\) are equivalent fractions.


5. Verify if \(\frac{2}{3}\) and \(\frac{4}{5}\) are equivalent.

Equivalent Fractions Verify

Multiplying numbers across fractions. 2 × 5 = 10 and 3 × 4 = 12 Cross products are not equal. Hence, \(\frac{2}{3}\) and \(\frac{4}{5}\) are not equivalent fractions.


6. Test whether \(\frac{2}{3}\), \(\frac{10}{15}\) and \(\frac{22}{33}\) are equivalent or not.

We express the above fractions to their lowest terms.

\(\frac{2}{3}\) is itself in its lowest terms.   (The H.C.F. of 2 and 3 is 1)

\(\frac{10}{15}\) = \(\frac{10 ÷ 5}{15 ÷ 5}\) = \(\frac{2}{3}\) and \(\frac{22}{33}\) = \(\frac{22 ÷ 11}{33 ÷ 11}\) = \(\frac{2}{3}\)

Because \(\frac{2}{3}\), \(\frac{10}{15}\) and \(\frac{22}{33}\) have the same value. So, they are equivalent fractions.



You might like these

Related Concept

Fraction of a Whole Numbers

Representation of a Fraction

Equivalent Fractions

Properties of Equivalent Fractions

Like and Unlike Fractions

Comparison of Like Fractions

Comparison of Fractions having the same Numerator

Types of Fractions

Changing Fractions

Conversion of Fractions into Fractions having Same Denominator

Conversion of a Fraction into its Smallest and Simplest Form

Addition of Fractions having the Same Denominator

Subtraction of Fractions having the Same Denominator

Addition and Subtraction of Fractions on the Fraction Number Line





4th Grade Math Activities

From Verification of Equivalent Fractions to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 10, 24 02:35 PM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  2. Types of Lines |Straight Lines|Curved Lines|Horizontal Lines| Vertical

    Dec 09, 24 10:39 PM

    Types of Lines
    What are the different types of lines? There are two different kinds of lines. (i) Straight line and (ii) Curved line. There are three different types of straight lines. (i) Horizontal lines, (ii) Ver…

    Read More

  3. Points and Line Segment | Two Points in a Curved Surface | Curve Line

    Dec 09, 24 01:08 AM

    Curved Lines and Straight Line
    We will discuss here about points and line segment. We know when two lines meet we get a point. When two points on a plane surface are joined, a straight line segment is obtained.

    Read More

  4. Solid Shapes | Basic Geometric Shapes | Common Solid Figures | Plane

    Dec 08, 24 11:19 PM

    Solid Shapes
    We will discuss about basic solid shapes. We see a variety of solid objects in our surroundings. Solid objects have one or more shapes like the following. Match the objects with similar shape.

    Read More

  5. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Dec 07, 24 03:38 PM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More