Changing Fractions

In changing fractions we will discuss how to change fractions from improper fraction to a whole or mixed number, from mixed number to an improper fraction, from whole number into an improper fraction.

Changing an improper fraction to a whole number or mixed number:

Here we will learn about changing an improper fraction to a whole or mixed number.

Changing Fractions

Cut out three circle of the same size. 

Fold each circle in four. 

Shade 4 parts from the first circle, 4 parts from the second circle and one part from the third circle.

Total parts shaded = 9 we have 9/4 parts.

Total parts in each circle 4 which is really 21/4 parts.

Note:

When the numerator of a fraction is greater than the denominator, the fraction is greater than 1. This can be written as mixed number.


Changing improper fractions to mixed numbers by dividing the numerator with the denominator.

1. 9/4

Changing Improper Fractions








= 21/4
Therefore, 9/4 = 21/4


2. 24/10 Try to reduce the numerator and denominator by a common denominator.

24/10 ÷ 2/2 = 12/5

Now divide numerator by denominator.

Improper Fractions to Mixed Numbers








= 22/5

Improper fraction

24/10

Mixed number

22/5

Sometimes an improper fraction change into a whole number when there is no remainder.


Conversion of an Improper Fraction into a Mixed Number:

3. Convert \(\frac{14}{3}\) into a mixed number.

First Method:

Steps I: Divide the numerator by the denominator.

Step II: Write the value as Q\(\frac{R}{D}\)

Q = Quotient = 4

R = Remainder = 2

D = Divisor = 3

Improper to Mixed Fraction

Therefore, \(\frac{14}{3}\) = 4\(\frac{2}{3}\)


Second Method:

\(\frac{14}{3}\) = \(\frac{12}{3}\) + \(\frac{2}{3}\)

      = 4 + \(\frac{2}{3}\)

      = 4\(\frac{2}{3}\)


4. Convert \(\frac{34}{8}\) into a mixed number.

First Method:         \(\frac{34}{8}\) = 4\(\frac{2}{8}\) = 4\(\frac{1}{4}\),        [2/8 = \(\frac{1}{4}\)]

Second Method:      \(\frac{34}{8}\) = \(\frac{32}{8}\) + \(\frac{2}{8}\)

                                  = 4 + \(\frac{2}{8}\)

                                  = 4\(\frac{2}{8}\)

                                  = 4\(\frac{1}{4}\)

Therefore, \(\frac{34}{8}\) = 4\(\frac{1}{4}\)

Improper to Mixed Fractions


5. \(\frac{16}{2}\) ÷ \(\frac{2}{2}\) = \(\frac{8}{1}\) = 8


Note:

When the denominator is 1 in an improper fraction, it becomes a whole number.


Changing a Mixed Number to an Improper Fraction:

Mother said I had eaten 31/2 chocolates.
This is what I took : 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 = 7 halves
                         = 7/2

But I looked carefully. I had eaten 3 full + 1/2 chocolate.

Let us learn the mathematical way of changing mixed numbers to improper fractions.


Mixed numbers = Denominator × Whole numbers + Numerator

         5\(\frac{1}{2}\)            =           2           ×             5            +       1        = \(\frac{11}{2}\)


Multiply denominator and whole number 5.

2 × 5 = 10

Mixed numbers

5\(\frac{11}{2}\)

Improper fraction

\(\frac{11}{2}\)

Add the numerator 10 + 1 = 11

This becomes the new numerator.

The old denominator remains.


Conversion of a Mixed Number to an Improper Fraction:

1. Convert 7\(\frac{2}{8}\) into an improper fraction.

First Method:

7\(\frac{2}{8}\) = \(\frac{(7 × 8) + 2}{8}\)

= \(\frac{56 + 2}{8}\)

= \(\frac{58}{8}\)


Second Method:

7\(\frac{2}{8}\) = 7 + \(\frac{2}{8}\)

= \(\frac{7}{1}\) + \(\frac{2}{8}\)

L.C.M. of 1 and 8 is 8.

\(\frac{7 × 8}{1 × 8}\) + \(\frac{2}{8}\) = \(\frac{56}{8}\) + \(\frac{2}{8}\)

= \(\frac{56 + 2}{8}\)

= \(\frac{58}{8}\)


2. Convert 5\(\frac{1}{6}\) into an improper fraction.

First Method:

5\(\frac{1}{6}\) = \(\frac{(5 × 6) + 1}{6}\)

= \(\frac{30 + 1}{6}\)

= \(\frac{31}{6}\)


Second Method:

5\(\frac{1}{6}\) = 5 + \(\frac{1}{6}\)

= \(\frac{5}{1}\) + \(\frac{1}{6}\)

M.C.M. of 1 and 6 is 6.

\(\frac{5 × 6}{1 × 6}\) + \(\frac{1}{6}\) = \(\frac{30}{6}\) + \(\frac{1}{6}\)

= \(\frac{30 + 1}{6}\)

= \(\frac{31}{6}\)


Changing a whole number into an improper fraction:

Whole number

7

Improper fraction

7/1

Since the denominator shows total parts and anything whole is out of 1 part, the improper fraction is formed by using 1 as the denominator.


Questions and Answers on Changing Fractions:

1. Convert the given fractions to mixed fractions:

(i) \(\frac{11}{2}\)

(ii) \(\frac{15}{9}\)

(iii) \(\frac{25}{4}\)

(iv) \(\frac{57}{7}\)


Answers:

1. (i) 5\(\frac{1}{2}\)

(ii) 1\(\frac{6}{9}\)

(iii) 6\(\frac{1}{4}\)

(iv) 8\(\frac{1}{7}\)


2. Convert the given mixed fractions to improper fractions:

(i) 3\(\frac{5}{6}\)

(ii) 7\(\frac{2}{9}\)

(iii) 5\(\frac{3}{4}\)

(iv) 8\(\frac{2}{3}\)


Answers:

2. (i) \(\frac{23}{6}\)

(ii) \(\frac{65}{9}\)

(iii) \(\frac{23}{4}\)

(iv) \(\frac{26}{3}\)


3. Change the following mixed fractions into improper fractions:

(i) 5\(\frac{4}{7}\)

(ii) 3\(\frac{3}{4}\)

(iii) 2\(\frac{5}{9}\)

(iv) 6\(\frac{1}{8}\)

(v) 4\(\frac{2}{9}\)


Answer:

3. (i) \(\frac{39}{7}\)

(ii) \(\frac{15}{4}\)

(iii) \(\frac{23}{9}\)

(iv) \(\frac{49}{8}\)

(v) \(\frac{38}{9}\)


4. Change into a whole number or a mixed numeral:

(i) \(\frac{40}{8}\)

(ii) \(\frac{13}{5}\)

(iii) \(\frac{15}{12}\)

(iv) \(\frac{16}{8}\)

(v) \(\frac{25}{9}\)


Answer:

4. (i) 5

(ii) 2\(\frac{3}{5}\)

(iii) 1\(\frac{1}{4}\) 

(iv) 2

(v) 2\(\frac{7}{9}\)

Related Concept





4th Grade Math Activities

From Changing Fractions to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Properties of Division | Division of Property Overview|Math Properties

    Jan 22, 25 01:30 AM

    Properties of Division
    The properties of division are discussed here: 1. If we divide a number by 1 the quotient is the number itself. In other words, when any number is divided by 1, we always get the number itself as the…

    Read More

  2. Terms Used in Division | Dividend | Divisor | Quotient | Remainder

    Jan 22, 25 12:54 AM

    Divide 12 Candies
    The terms used in division are dividend, divisor, quotient and remainder. Division is repeated subtraction. For example: 24 ÷ 6 How many times would you subtract 6 from 24 to reach 0?

    Read More

  3. Divide on a Number Line | Various Division Problems | Solved Examples

    Jan 22, 25 12:41 AM

    How to divide on a number line? Learn to divide using number line to find the quotient. Solved examples to show divide on a number line: 1. Solve 14 ÷ 7 Solution: 7 is subtracted repeatedly

    Read More

  4. Divide by Repeated Subtraction | Division as Repeated Subtraction

    Jan 22, 25 12:18 AM

    Divide by Repeated Subtraction
    How to divide by repeated subtraction? We will learn how to find the quotient and remainder by the method of repeated subtraction a division problem may be solved.

    Read More

  5. Division Sharing and Grouping | Facts about Division | Basic Division

    Jan 21, 25 08:06 AM

    Sharing and Grouping
    We will learn division sharing and grouping. Share eight strawberries between four children. Let us distribute strawberries equally to all the four children one by one.

    Read More