Changing Fractions

In changing fractions we will discuss how to change fractions from improper fraction to a whole or mixed number, from mixed number to an improper fraction, from whole number into an improper fraction.

Changing an improper fraction to a whole number or mixed number:

Here we will learn about changing an improper fraction to a whole or mixed number.

Changing Fractions

Cut out three circle of the same size. 

Fold each circle in four. 

Shade 4 parts from the first circle, 4 parts from the second circle and one part from the third circle.

Total parts shaded = 9 we have 9/4 parts.

Total parts in each circle 4 which is really 21/4 parts.


When the numerator of a fraction is greater than the denominator, the fraction is greater than 1. This can be written as mixed number.

Changing improper fractions to mixed numbers by dividing the numerator with the denominator.

1. 9/4

Changing Improper Fractions

= 21/4
Therefore, 9/4 = 21/4

2. 24/10 Try to reduce the numerator and denominator by a common denominator.

24/10 ÷ 2/2 = 12/5

Now divide numerator by denominator.

Improper Fractions to Mixed Numbers

= 22/5

Improper fraction


Mixed number


Sometimes an improper fraction change into a whole number when there is no remainder.

Conversion of an Improper Fraction into a Mixed Number:

3. Convert \(\frac{14}{3}\) into a mixed number.

First Method:

Steps I: Divide the numerator by the denominator.

Step II: Write the value as Q\(\frac{R}{D}\)

Q = Quotient = 4

R = Remainder = 2

D = Divisor = 3

Improper to Mixed Fraction

Therefore, \(\frac{14}{3}\) = 4\(\frac{2}{3}\)

Second Method:

\(\frac{14}{3}\) = \(\frac{12}{3}\) + \(\frac{2}{3}\)

      = 4 + \(\frac{2}{3}\)

      = 4\(\frac{2}{3}\)

4. Convert \(\frac{34}{8}\) into a mixed number.

First Method:         \(\frac{34}{8}\) = 4\(\frac{2}{8}\) = 4\(\frac{1}{4}\),        [2/8 = \(\frac{1}{4}\)]

Second Method:      \(\frac{34}{8}\) = \(\frac{32}{8}\) + \(\frac{2}{8}\)

                                  = 4 + \(\frac{2}{8}\)

                                  = 4\(\frac{2}{8}\)

                                  = 4\(\frac{1}{4}\)

Therefore, \(\frac{34}{8}\) = 4\(\frac{1}{4}\)

Improper to Mixed Fractions

5. \(\frac{16}{2}\) ÷ \(\frac{2}{2}\) = \(\frac{8}{1}\) = 8


When the denominator is 1 in an improper fraction, it becomes a whole number.

Changing a Mixed Number to an Improper Fraction:

Mother said I had eaten 31/2 chocolates.
This is what I took : 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 = 7 halves
                         = 7/2

But I looked carefully. I had eaten 3 full + 1/2 chocolate.

Let us learn the mathematical way of changing mixed numbers to improper fractions.

Mixed numbers = Denominator × Whole numbers + Numerator

         5\(\frac{1}{2}\)            =           2           ×             5            +       1        = \(\frac{11}{2}\)

Multiply denominator and whole number 5.

2 × 5 = 10

Mixed numbers


Improper fraction


Add the numerator 10 + 1 = 11

This becomes the new numerator.

The old denominator remains.

Conversion of a Mixed Number to an Improper Fraction:

1. Convert 7\(\frac{2}{8}\) into an improper fraction.

First Method:

7\(\frac{2}{8}\) = \(\frac{(7 × 8) + 2}{8}\)

= \(\frac{56 + 2}{8}\)

= \(\frac{58}{8}\)

Second Method:

7\(\frac{2}{8}\) = 7 + \(\frac{2}{8}\)

= \(\frac{7}{1}\) + \(\frac{2}{8}\)

L.C.M. of 1 and 8 is 8.

\(\frac{7 × 8}{1 × 8}\) + \(\frac{2}{8}\) = \(\frac{56}{8}\) + \(\frac{2}{8}\)

= \(\frac{56 + 2}{8}\)

= \(\frac{58}{8}\)

2. Convert 5\(\frac{1}{6}\) into an improper fraction.

First Method:

5\(\frac{1}{6}\) = \(\frac{(5 × 6) + 1}{6}\)

= \(\frac{30 + 1}{6}\)

= \(\frac{31}{6}\)

Second Method:

5\(\frac{1}{6}\) = 5 + \(\frac{1}{6}\)

= \(\frac{5}{1}\) + \(\frac{1}{6}\)

M.C.M. of 1 and 6 is 6.

\(\frac{5 × 6}{1 × 6}\) + \(\frac{1}{6}\) = \(\frac{30}{6}\) + \(\frac{1}{6}\)

= \(\frac{30 + 1}{6}\)

= \(\frac{31}{6}\)

Changing a whole number into an improper fraction:

Whole number


Improper fraction


Since the denominator shows total parts and anything whole is out of 1 part, the improper fraction is formed by using 1 as the denominator.

Questions and Answers on Changing Fractions:

1. Convert the given fractions to mixed fractions:

(i) \(\frac{11}{2}\)

(ii) \(\frac{15}{9}\)

(iii) \(\frac{25}{4}\)

(iv) \(\frac{57}{7}\)


1. (i) 5\(\frac{1}{2}\)

(ii) 1\(\frac{6}{9}\)

(iii) 6\(\frac{1}{4}\)

(iv) 8\(\frac{1}{7}\)

2. Convert the given mixed fractions to improper fractions:

(i) 3\(\frac{5}{6}\)

(ii) 7\(\frac{2}{9}\)

(iii) 5\(\frac{3}{4}\)

(iv) 8\(\frac{2}{3}\)


2. (i) \(\frac{23}{6}\)

(ii) \(\frac{65}{9}\)

(iii) \(\frac{23}{4}\)

(iv) \(\frac{26}{3}\)

3. Change the following mixed fractions into improper fractions:

(i) 5\(\frac{4}{7}\)

(ii) 3\(\frac{3}{4}\)

(iii) 2\(\frac{5}{9}\)

(iv) 6\(\frac{1}{8}\)

(v) 4\(\frac{2}{9}\)


3. (i) \(\frac{39}{7}\)

(ii) \(\frac{15}{4}\)

(iii) \(\frac{23}{9}\)

(iv) \(\frac{49}{8}\)

(v) \(\frac{38}{9}\)

4. Change into a whole number or a mixed numeral:

(i) \(\frac{40}{8}\)

(ii) \(\frac{13}{5}\)

(iii) \(\frac{15}{12}\)

(iv) \(\frac{16}{8}\)

(v) \(\frac{25}{9}\)


4. (i) 5

(ii) 2\(\frac{3}{5}\)

(iii) 1\(\frac{1}{4}\) 

(iv) 2

(v) 2\(\frac{7}{9}\)

Related Concept

4th Grade Math Activities

From Changing Fractions to HOME PAGE

New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

Share this page: What’s this?

Recent Articles

  1. Fraction as a Part of Collection | Pictures of Fraction | Fractional

    Feb 24, 24 04:33 PM

    Pictures of Fraction
    How to find fraction as a part of collection? Let there be 14 rectangles forming a box or rectangle. Thus, it can be said that there is a collection of 14 rectangles, 2 rectangles in each row. If it i…

    Read More

  2. Fraction of a Whole Numbers | Fractional Number |Examples with Picture

    Feb 24, 24 04:11 PM

    A Collection of Apples
    Fraction of a whole numbers are explained here with 4 following examples. There are three shapes: (a) circle-shape (b) rectangle-shape and (c) square-shape. Each one is divided into 4 equal parts. One…

    Read More

  3. Identification of the Parts of a Fraction | Fractional Numbers | Parts

    Feb 24, 24 04:10 PM

    Fractional Parts
    We will discuss here about the identification of the parts of a fraction. We know fraction means part of something. Fraction tells us, into how many parts a whole has been

    Read More

  4. Numerator and Denominator of a Fraction | Numerator of the Fraction

    Feb 24, 24 04:09 PM

    What are the numerator and denominator of a fraction? We have already learnt that a fraction is written with two numbers arranged one over the other and separated by a line.

    Read More

  5. Roman Numerals | System of Numbers | Symbol of Roman Numerals |Numbers

    Feb 24, 24 10:59 AM

    List of Roman Numerals Chart
    How to read and write roman numerals? Hundreds of year ago, the Romans had a system of numbers which had only seven symbols. Each symbol had a different value and there was no symbol for 0. The symbol…

    Read More