# Comparison of Fractions having the same Numerator

In comparison of fractions having the same numerator the following rectangular figures having the same lengths are divided in different parts to show different denominators.

(i)

(ii)

(iii)

3/10 < 3/5 < 3/4 or 3/4 > 3/5 > 3/10

In the fractions having the same numerator, that fraction is greater which has the smaller denominator.

5/11 > 5/17, 5/17 < 5/11, 7/15 > 7/16, 7/16 < 7/15

Again, comparison of fractions with the same numerator

Take two strips of the same length:

The first strip is divided into 5 equal parts and the second is divided into 7 equal parts. In the first strip, out of 5 equal parts 3 parts are shaded and in the second strip, out of 7 equal parts 3 parts are shaded. Clearly, the shaded part in the first strip is more than that in the second strip.

Thus, 3/5 > 3/7

Hence, among two fractions having the same numerator, the fraction with the smaller denominator is greater than the other.

Solved Examples on Comparison of Fractions having the same Numerator:

1. Compare 6/9, 6/11

Solution:

6/9  and  6/11

Since, 9 < 11

Hence, 6/9 > 6/11

1. Compare 12/17, 12/14

Solution:

12/17  and  12/14

Since, 17 > 14

Hence, 12/17 < 12/14

Comparison Fractions with same Numerator

If two fractions have the same numerator, the fraction with the smaller denominator denotes the greater fraction.

For example,

$$\frac{5}{7}$$ > $$\frac{5}{13}$$

$$\frac{9}{15}$$ < $$\frac{9}{13}$$

If there are three or more fractions having the same numerator, they may be arranged in ascending (increasing) and descending (decreasing) order. The order will be in opposite order of denominators. The bigger denominator will make the smaller fraction.

(a) Ascending order: 1/9, 1/7, 1/5, 1/4, 1/3

as 9 > 7 > 5 > 4 > 3

(b) Descending order: 5/3, 5/6, 5/9, 5/12, 5/18

as 3 < 6 < 9 < 12 < 18

Similarly again;

(a) Ascending order: 7/11, 7/9, 7/6, 7/5, 7/2

as 11 > 9 > 6 > 5 > 2

(b) Descending order: 11/1, 11/5, 11/7, 11/10, 11/15

as 1 < 5 < 7 < 10 < 15

Ordering of fraction and comparing fractions:

We know, a fraction represents an equal part of a whole thing.

(a)

A whole cake = 1 cake

We can also write it as 1/1 which means in half the denominator has 1 part and numerator has taken the 1 part.

1/1 = 1.

(b)

 $$\frac{1}{2}$$

Now the cake has been divided into two half parts and one part has been taken.

We write it as 1/2.

$$\frac{1}{3}$$                          $$\frac{1}{4}$$                         $$\frac{1}{5}$$                         $$\frac{1}{6}$$

Note:

As the number of the denominator is getting bigger, the size of the part taken is getting smaller.

1 > 1/2 > 1/3 > 1/4 > 1/5 > 1/6 …..

When the numerator is 1 in a fraction number, it is called a unit fraction.

## You might like these

• ### Equivalent Fractions | Fractions |Reduced to the Lowest Term |Examples

The fractions having the same value are called equivalent fractions. Their numerator and denominator can be different but, they represent the same part of a whole. We can see the shade portion with respect to the whole shape in the figures from (i) to (viii) In; (i) Shaded

• ### Mental Math on Fractions | Fractions Worksheets | Fraction Mental Math

In mental math on fractions we will solve different type of problems on types of fractions, equivalent fractions, fraction in lowest terms, comparison of fractions, fraction in lowest term, types of fractions, addition of fractions, subtraction of fractions and word problems

• ### Worksheet on Fractions | Questions on Fractions | Representation | Ans

In worksheet on fractions, all grade students can practice the questions on fractions on a whole number and also on representation of a fraction. This exercise sheet on fractions can be practiced

• ### Worksheet on Fractions | Fraction Magic Square |Comparing Fractions

In worksheet on fractions, the questions are based on comparing the fractions; arranging the fractions in ascending and descending order; find the sum and the difference of the fractions

• ### Conversion of Improper Fractions into Mixed Fractions |Solved Examples

In conversion of improper fractions into mixed fractions, we follow the following steps: Step I: Obtain the improper fraction. Step II: Divide the numerator by the denominator

• ### Conversion of Mixed Fractions into Improper Fractions |Solved Examples

In conversion of mixed fractions into improper fractions, we may follow the following steps: Step I: Obtain the mixed fraction. Let the mixed fraction be 22/5. Step II: Identify the whole number

• ### Proper Fraction and Improper Fraction |Definition| Examples |Worksheet

What is the difference between proper fraction and improper fraction? Proper fraction: The fractions 1/4, 3/8, 5/11, 9/13, 14/25, etc. are the fractions where the numerators are smaller than

• ### Like and Unlike Fractions | Like Fractions |Unlike Fractions |Examples

Like and unlike fractions are the two groups of fractions: (i) 1/5, 3/5, 2/5, 4/5, 6/5 (ii) 3/4, 5/6, 1/3, 4/7, 9/9 In group (i) the denominator of each fraction is 5, i.e., the denominators of the fractions are equal. The fractions with the same denominators are called

• ### Types of Fractions |Proper Fraction |Improper Fraction |Mixed Fraction

The three types of fractions are : Proper fraction, Improper fraction, Mixed fraction, Proper fraction: Fractions whose numerators are less than the denominators are called proper fractions. (Numerator < denominator). Two parts are shaded in the above diagram.

• ### Subtraction of Fractions having the Same Denominator | Like Fractions

To find the difference between like fractions we subtract the smaller numerator from the greater numerator. In subtraction of fractions having the same denominator, we just need to subtract the numerators of the fractions.

• ### Addition of Like Fractions | Examples | Worksheet | Answer | Fractions

To add two or more like fractions we simplify add their numerators. The denominator remains same. Thus, to add the fractions with the same denominator, we simply add their numerators and write the common denominator.

• ### Comparison of Unlike Fractions | Compare Unlike Fractions | Examples

In comparison of unlike fractions, we change the unlike fractions to like fractions and then compare. To compare two fractions with different numerators and different denominators, we multiply by a number to convert them to like fractions. Let us consider some of the

• ### Comparison of Like Fractions | Comparing Fractions | Like Fractions

Any two like fractions can be compared by comparing their numerators. The fraction with larger numerator is greater than the fraction with smaller numerator, for example $$\frac{7}{13}$$ > $$\frac{2}{13}$$ because 7 > 2. In comparison of like fractions here are some

• ### Fraction in Lowest Terms |Reducing Fractions|Fraction in Simplest Form

There are two methods to reduce a given fraction to its simplest form, viz., H.C.F. Method and Prime Factorization Method. If numerator and denominator of a fraction have no common factor other than 1(one), then the fraction is said to be in its simple form or in lowest

• ### Fraction as a Part of Collection | Pictures of Fraction | Fractional

How to find fraction as a part of collection? Let there be 14 rectangles forming a box or rectangle. Thus, it can be said that there is a collection of 14 rectangles, 2 rectangles in each row. If it is folded into two halves, each half will have 7 rectangles. So, we can say

Related Concept

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

## Recent Articles

1. ### Estimating Sum and Difference | Reasonable Estimate | Procedure | Math

May 22, 24 06:21 PM

The procedure of estimating sum and difference are in the following examples. Example 1: Estimate the sum 5290 + 17986 by estimating the numbers to their nearest (i) hundreds (ii) thousands.

2. ### Round off to Nearest 1000 |Rounding Numbers to Nearest Thousand| Rules

May 22, 24 06:14 PM

While rounding off to the nearest thousand, if the digit in the hundreds place is between 0 – 4 i.e., < 5, then the hundreds place is replaced by ‘0’. If the digit in the hundreds place is = to or > 5…

3. ### Round off to Nearest 100 | Rounding Numbers To Nearest Hundred | Rules

May 22, 24 05:17 PM

While rounding off to the nearest hundred, if the digit in the tens place is between 0 – 4 i.e. < 5, then the tens place is replaced by ‘0’. If the digit in the units place is equal to or >5, then the…

4. ### Round off to Nearest 10 |How To Round off to Nearest 10?|Rounding Rule

May 22, 24 03:49 PM

Round off to nearest 10 is discussed here. Rounding can be done for every place-value of number. To round off a number to the nearest tens, we round off to the nearest multiple of ten. A large number…