Conversion of Improper Fractions into Mixed Fractions

In conversion of improper fractions into mixed fractions, we follow the following steps:

Step I:

Obtain the improper fraction.

Step II:

Divide the numerator by the denominator and obtain the quotient and remainder.

Step III:

Write the mixed fraction as: Quotient\(\frac{Remainder}{Denominator}\).

Let us convert \(\frac{7}{5}\) into a mixed number.

As you know if a fraction has same number as numerator and denominator, it makes a whole. Here in \(\frac{7}{5}\) we can take out \(\frac{5}{5}\) to make a whole and the remaining fraction we have is \(\frac{2}{5}\). So, \(\frac{7}{5}\) can be written in mixed numbers as 1\(\frac{2}{5}\).

Conversion of Improper Fractions into Mixed Fractions

                          \(\frac{5}{5}\) = 1                        +                           \(\frac{2}{5}\)

                                           \(\frac{7}{5}\) = \(\frac{5}{5}\) + \(\frac{2}{5}\) = 1 + \(\frac{2}{5 }\) = 1\(\frac{2}{5}\)


Actually, \(\frac{7}{5}\) means 7 ÷ 5. When we divide 7 by 5 we get 1 as quotient and 2 as remainder. To convert an improper fraction into a mixed number we place the quotient 1 as the whole number, the remainder 2 as the numerator and the divisor 5 as the denominator of the proper fraction.

Improper Fractions into Mixed Fractions

For Example:


1. Express each of the following improper fractions as mixed fractions:

(i) \(\frac{17}{4}\)

We have,

Conversion of Improper Fractions into Mixed Fractions

Therefore, Quotient = 4, Remainder = 1, Denominator = 4.

Hence, \(\frac{17}{4}\) = 4\(\frac{1}{4}\)



(ii) \(\frac{13}{5}\)

We have,

Conversion of Improper Fractions into Mixed Fractions

Therefore, Quotient = 2, Remainder = 3, Denominator = 5.

Hence, \(\frac{13}{5}\) = 2\(\frac{3}{5}\)



(iii) \(\frac{28}{5}\)

We have,

Conversion of Improper Fractions into Mixed Fractions

Therefore, Quotient = 5, Remainder = 3, Denominator = 5

Hence, \(\frac{28}{5}\) = 5\(\frac{3}{5}\).



(iv) \(\frac{28}{9}\)

We have,

Conversion of Improper Fractions into Mixed Fractions

Therefore, Quotient = 3, Remainder = 1, Denominator = 9

Hence, \(\frac{28}{9}\) = 3\(\frac{1}{9}\).



(v) \(\frac{226}{15}\)

We have,

Conversion of Improper Fractions into Mixed Fractions


Therefore, Quotient = 15, Remainder = 1, Denominator = 15

Hence, \(\frac{226}{15}\) = 15\(\frac{1}{15}\).


Conversion of an Improper Fraction Into a Mixed Fraction:

2. Let us convert 22/5 into an mixed fraction.

Divide the numerator 22 by the denominator 5.

Improper Fractions into Mixed Fractions

The quotient 4 gives the whole number. The remainder 2 is the numerator of the fractions.

The denominator of the fraction remains the same. So, \(\frac{22}{5}\) = 4\(\frac{2}{5}\)


3. Convert \(\frac{41}{3}\) into mixed fraction.

Divide the numerator 41 by the denominator 3.

Improper to Mixed Fractions

The quotient 13 gives the whole number. The remainder 2 is the numerator of the fractions.

The denominator of the fraction remains the same.

So, \(\frac{41}{3}\) = 13\(\frac{2}{3}\)


Worksheet on Conversion of Improper Fractions into Mixed Fractions:

1. Convert the following into Improper Fractions:

(i) \(\frac{11}{9}\)

(ii) \(\frac{24}{5}\)

(iii) \(\frac{26}{8}\)

(iv) \(\frac{59}{9}\)

(v) \(\frac{64}{7}\)


Answer:

1. (i) 1\(\frac{2}{9}\)

(ii) 4\(\frac{4}{5}\)

(iii) 3\(\frac{2}{8}\)

(iv) 6\(\frac{5}{9}\)

(v) 9\(\frac{1}{7}\)

You might like these

Fraction

Representations of Fractions on a Number Line

Fraction as Division

Types of Fractions

Conversion of Mixed Fractions into Improper Fractions

Conversion of Improper Fractions into Mixed Fractions

Equivalent Fractions

Interesting Fact about Equivalent Fractions

Fractions in Lowest Terms

Like and Unlike Fractions

Comparing Like Fractions

Comparing Unlike Fractions

Addition and Subtraction of Like Fractions

Addition and Subtraction of Unlike Fractions

Inserting a Fraction between Two Given Fractions



Numbers Page

6th Grade Page

From Conversion of Improper Fractions into Mixed Fractions to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Worksheet on Triangle | Homework on Triangle | Different types|Answers

    Jun 21, 24 02:19 AM

    Find the Number of Triangles
    In the worksheet on triangle we will solve 12 different types of questions. 1. Take three non - collinear points L, M, N. Join LM, MN and NL. What figure do you get? Name: (a)The side opposite to ∠L…

    Read More

  2. Worksheet on Circle |Homework on Circle |Questions on Circle |Problems

    Jun 21, 24 01:59 AM

    Circle
    In worksheet on circle we will solve 10 different types of question in circle. 1. The following figure shows a circle with centre O and some line segments drawn in it. Classify the line segments as ra…

    Read More

  3. Circle Math | Parts of a Circle | Terms Related to the Circle | Symbol

    Jun 21, 24 01:30 AM

    Circle using a Compass
    In circle math the terms related to the circle are discussed here. A circle is such a closed curve whose every point is equidistant from a fixed point called its centre. The symbol of circle is O. We…

    Read More

  4. Circle | Interior and Exterior of a Circle | Radius|Problems on Circle

    Jun 21, 24 01:00 AM

    Semi-circular Region
    A circle is the set of all those point in a plane whose distance from a fixed point remains constant. The fixed point is called the centre of the circle and the constant distance is known

    Read More

  5. Quadrilateral Worksheet |Different Types of Questions in Quadrilateral

    Jun 19, 24 09:49 AM

    In math practice test on quadrilateral worksheet we will practice different types of questions in quadrilateral. Students can practice the questions of quadrilateral worksheet before the examinations

    Read More