Conversion of Improper Fractions into Mixed Fractions

In conversion of improper fractions into mixed fractions, we follow the following steps:

Step I: Obtain the improper fraction.

Step II: Divide the numerator by the denominator and obtain the quotient and remainder.

Step III: Write the mixed fraction as: Quotient\(\frac{Remainder}{Denominator}\).

To convert an improper fraction into a mixed number, divide the numerator of the given improper fraction by its denominator. The quotient will represent the whole number and the remainder so obtained will be the numerator of the fractional part. The denominator of the fractional part will be the same as that of the improper fraction i.e.,

Convert Improper Fractions into Mixed Fractions

Let us convert \(\frac{7}{5}\) into a mixed number.

As you know if a fraction has same number as numerator and denominator, it makes a whole. Here in \(\frac{7}{5}\) we can take out \(\frac{5}{5}\) to make a whole and the remaining fraction we have is \(\frac{2}{5}\). So, \(\frac{7}{5}\) can be written in mixed numbers as 1\(\frac{2}{5}\).

Conversion of Improper Fractions into Mixed Fractions

                          \(\frac{5}{5}\) = 1                        +                           \(\frac{2}{5}\)

                                           \(\frac{7}{5}\) = \(\frac{5}{5}\) + \(\frac{2}{5}\) = 1 + \(\frac{2}{5 }\) = 1\(\frac{2}{5}\)


Actually, \(\frac{7}{5}\) means 7 ÷ 5. When we divide 7 by 5 we get 1 as quotient and 2 as remainder. To convert an improper fraction into a mixed number we place the quotient 1 as the whole number, the remainder 2 as the numerator and the divisor 5 as the denominator of the proper fraction.

Improper Fractions into Mixed Fractions

Examples on Conversion of Improper Fractions into Mixed Fractions:

For Example:


1. Express each of the following improper fractions as mixed fractions:

(i) \(\frac{17}{4}\)

We have,

Conversion of Improper Fractions into Mixed Fractions

Therefore, Quotient = 4, Remainder = 1, Denominator = 4.

Hence, \(\frac{17}{4}\) = 4\(\frac{1}{4}\)



(ii) \(\frac{13}{5}\)

We have,

Conversion of Improper Fractions into Mixed Fractions

Therefore, Quotient = 2, Remainder = 3, Denominator = 5.

Hence, \(\frac{13}{5}\) = 2\(\frac{3}{5}\)



(iii) \(\frac{28}{5}\)

We have,

Conversion of Improper Fractions into Mixed Fractions

Therefore, Quotient = 5, Remainder = 3, Denominator = 5

Hence, \(\frac{28}{5}\) = 5\(\frac{3}{5}\).



(iv) \(\frac{28}{9}\)

We have,

Conversion of Improper Fractions into Mixed Fractions

Therefore, Quotient = 3, Remainder = 1, Denominator = 9

Hence, \(\frac{28}{9}\) = 3\(\frac{1}{9}\).



(v) \(\frac{226}{15}\)

We have,

Conversion of Improper Fractions into Mixed Fractions


Therefore, Quotient = 15, Remainder = 1, Denominator = 15

Hence, \(\frac{226}{15}\) = 15\(\frac{1}{15}\).


2. Convert each of the following improper fractions into mixed numbers.

(i) \(\frac{15}{7}\)

(ii) \(\frac{24}{9}\)


Solution:

(i)

Conversion of Improper Fractions into Mixed Fractions


(ii) 

Conversion of Improper Fractions into Mixed Fractions



Conversion of an Improper Fraction Into a Mixed Fraction:

3. Let us convert \(\frac{22}{5}\) into an mixed fraction.

Divide the numerator 22 by the denominator 5.

Improper Fractions into Mixed Fractions

The quotient 4 gives the whole number. The remainder 2 is the numerator of the fractions.

The denominator of the fraction remains the same. So, \(\frac{22}{5}\) = 4\(\frac{2}{5}\)


4. Convert \(\frac{41}{3}\) into mixed fraction.

Divide the numerator 41 by the denominator 3.

Improper to Mixed Fractions

The quotient 13 gives the whole number. The remainder 2 is the numerator of the fractions.

The denominator of the fraction remains the same.

So, \(\frac{41}{3}\) = 13\(\frac{2}{3}\)


Worksheet on Conversion of Improper Fractions into Mixed Fractions:

1. Convert the following into Improper Fractions:

(i) \(\frac{11}{9}\)

(ii) \(\frac{24}{5}\)

(iii) \(\frac{26}{8}\)

(iv) \(\frac{59}{9}\)

(v) \(\frac{64}{7}\)


Answer:

1. (i) 1\(\frac{2}{9}\)

(ii) 4\(\frac{4}{5}\)

(iii) 3\(\frac{2}{8}\)

(iv) 6\(\frac{5}{9}\)

(v) 9\(\frac{1}{7}\)

You might like these

Fraction

Representations of Fractions on a Number Line

Fraction as Division

Types of Fractions

Conversion of Mixed Fractions into Improper Fractions

Conversion of Improper Fractions into Mixed Fractions

Equivalent Fractions

Interesting Fact about Equivalent Fractions

Fractions in Lowest Terms

Like and Unlike Fractions

Comparing Like Fractions

Comparing Unlike Fractions

Addition and Subtraction of Like Fractions

Addition and Subtraction of Unlike Fractions

Inserting a Fraction between Two Given Fractions



Numbers Page

6th Grade Page

From Conversion of Improper Fractions into Mixed Fractions to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 14, 24 02:12 PM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  2. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Dec 14, 24 12:25 PM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More

  3. Patterns in Numbers | Patterns in Maths |Math Patterns|Series Patterns

    Dec 13, 24 08:43 AM

    Complete the Series Patterns
    We see so many patterns around us in our daily life. We know that a pattern is an arrangement of objects, colors, or numbers placed in a certain order. Some patterns neither grow nor reduce but only r…

    Read More

  4. Patterns in Math | Missing Number | Counting Numbers | Worksheets

    Dec 13, 24 12:31 AM

    Finding patterns in math is very important to understand the sequence in the series. We need to find the exact missing number that from the group of numbers. The counting numbers may be counting

    Read More

  5. Concept of Pattern | Similar Patterns in Mathematics | Similar Pattern

    Dec 12, 24 11:22 PM

    Patterns in Necklace
    Concept of pattern will help us to learn the basic number patterns and table patterns. Animals such as all cows, all lions, all dogs and all other animals have dissimilar features. All mangoes have si…

    Read More