Equivalent Fractions
Equivalent fractions are the fractions having the same value. Same fraction can be represented in many ways. Let us take the following example.
In picture (i) the shaded part is represented by fraction \(\frac{1}{2}\).
The shaded part in picture (ii) is represented by fraction \(\frac{2}{4}\). In picture (iii) the same part is represented by fraction \(\frac{4}{8}\). SO, the fraction represented by these shaded portions are equal. Such fractions are called equivalent fractions.
We say that \(\frac{1}{2}\) = \(\frac{2}{4}\) = \(\frac{4}{8}\)
Hence, for a given fraction there can be many equivalent fractions.
Making Equivalent Fractions:
We have seen in the above example that \(\frac{1}{2}\), \(\frac{2}{4}\) and \(\frac{4}{8}\) are equivalent fractions.
Therefore, \(\frac{1}{2}\) can be written as \(\frac{1}{2}\) = \(\frac{1 × 2}{2 × 2}\) = \(\frac{1 × 3}{2 × 3}\) = \(\frac{1 × 4}{2 × 4}\) and so on.
Hence, an equivalent fraction of any given fraction can be obtained by multiplying its numerator and denominator by the same number.
Same way, when the numerator and denominator of a fraction are divided by the same number, we get its equivalent fractions.
\(\frac{1}{2}\) = \(\frac{1 ÷ 1}{2 ÷ 1}\) = \(\frac{2}{4}\) = \(\frac{2 ÷ 2}{4 ÷ 2}\) = \(\frac{3}{6}\) = \(\frac{3 ÷ 3}{6 ÷ 3}\)
We have,
2/4 = (1 × 2)/(2 × 2)
3/6 = (1 × 3)/(2 × 3)
4/8 = (1 × 4)/(2 × 4)
We observe that
2/
4,
3/
6 and
4/
8 are obtained by multiplying the numerator and denominator of
1/
2 by 2, 3 and 4 respectively.
Thus, an equivalent fraction of a given fraction can be obtained by multiplying its numerator and denominator by the same number (other than zero).
2/4 = (2÷ 2)/(4 ÷ 2) = 1/2
3/6 = (3÷ 3)/(6 ÷ 3) = 1/2
4/8 = (4 ÷ 4)/(8 ÷ 4) = 1/2
We observe that if we divide the numerators and denominators of
2/
4,
3/
6 and
4/
8 each by their common factor 2, we get an equivalent fraction
1/
2.
Thus, an equivalent fraction of a given fraction can be obtained by dividing its numerator and denominator by their common factor (other than 1), if ant.
Note:
(i) Multiplying its numerator (top) and denominator (bottom) by the same number (other than 0).
(ii) Dividing its numerator (top) and denominator (bottom) by their common factor (other than 1).
For Example:
1. Write three equivalent fraction of
3/
5.
Equivalent fractions of
3/
5 are:
(3 × 2)/(5× 2) = 6/10,
(3 × 3)/(5 × 3) = 9/15,
(3 × 4)/(5 × 4) = 12/20
Therefore, equivalent fractions of
3/
5 are
6/
10,
9/
15 and
12/
20.
2. Write next three equivalent fraction of \(\frac{2}{3}\).
We multiply the numerator and the denominator by 2.
We get, \(\frac{2 × 2}{3 × 2}\) = \(\frac{4}{6}\)
Next, we multiply the numerator and the denominator by 3. We get
\(\frac{2 × 3}{3 × 3}\) = \(\frac{6}{9}\).
Next, we multiply the numerator and the denominator by 4. We get
\(\frac{2 × 4}{3 × 4}\) = \(\frac{8}{12}\).
Therefore, equivalent fractions of \(\frac{2}{3}\) are \(\frac{4}{6}\), \(\frac{6}{9}\) and \(\frac{8}{12}\).
3. Write three equivalent fraction of
1/
4.
Equivalent fractions of
1/
4 are:
(1× 2)/(4× 2) = 2/8,
(1 × 3)/(4 × 3) = 3/12,
(1× 4)/(4× 4) = 4/16
Therefore, equivalent fractions of
1/
4 are
2/
8,
3/
12 and
4/
16.
4. Write three equivalent fraction of
2/
15.
Equivalent fractions of
2/
15 are:
(2× 2)/(15 × 2) = 4/30,
(2 × 3)/(15 × 3) = 6/45,
(2× 4)/(15 × 4) = 8/60
Therefore, equivalent fractions of
2/
15 are
4/
30,
6/
45 and
8/
60.
5. Write three equivalent fraction of
3/
10.
Equivalent fractions of
3/
10 are:
(3× 2)/(10× 2) = 6/20,
(3 × 3)/(10 × 3) = 9/30,
(3× 4)/(10× 4) = 12/40
Therefore, equivalent fractions of
3/
10 are
6/
20,
9/
30 and
12/
40.
You might like these
Practice the questions given in the worksheet on word problems on multiplication of mixed fractions. We know to solve the problems on multiplying mixed fractions first we need to convert them
We will discuss here how to solve the word problems on division of mixed fractions or division of mixed numbers. Let us consider some of the examples. 1. The product of two numbers is 18.
We will discuss here how to solve the word problems on multiplication of mixed fractions or multiplication of mixed numbers. Let us consider some of the examples. 1. Aaron had 324 toys. He gave 1/3
We will discuss here about dividing fractions by a whole number, by a fractional number or by another mixed fractional number. First let us recall how to find reciprocal of a fraction
Here we will learn Reciprocal of a fraction. What is 1/4 of 4? We know that 1/4 of 4 means 1/4 × 4, let us use the rule of repeated addition to find 1/4× 4. We can say that \(\frac{1}{4}\) is the reciprocal of 4 or 4 is the reciprocal or multiplicative inverse of 1/4
To multiply two or more fractions, we multiply the numerators of given fractions to find the new numerator of the product and multiply the denominators to get the denominator of the product. To multiply a fraction by a whole number, we multiply the numerator of the fraction
To subtract unlike fractions, we first convert them into like fractions. In order to make a common denominator, we find LCM of all the different denominators of given fractions and then make them equivalent fractions with a common denominators.
In word problems on fraction we will solve different types of problems on multiplication of fractional numbers and division of fractional numbers.
To find the difference between like fractions we subtract the smaller numerator from the greater numerator. In subtraction of fractions having the same denominator, we just need to subtract the numerators of the fractions.
The associative and commutative properties of natural numbers hold good in the case of fractions also.
To add unlike fractions, we first convert them into like fractions. In order to make a common denominator we find the LCM of all different denominators of the given fractions and then make them equivalent fractions with a common denominator.
To add two or more like fractions we simplify add their numerators. The denominator remains same.
We will discuss here how to arrange the fractions in descending order. Solved examples for arranging in descending order: 1. Arrange the following fractions 5/6, 7/10, 11/20 in descending order. First we find the L.C.M. of the denominators of the fractions to make the
We will discuss here how to arrange the fractions in ascending order. Solved examples for arranging in ascending order: 1. Arrange the following fractions 5/6, 8/9, 2/3 in ascending order. First we find the L.C.M. of the denominators of the fractions to make the denominators
In comparison of unlike fractions, we change the unlike fractions to like fractions and then compare. To compare two fractions with different numerators and different denominators, we multiply by a number to convert them to like fractions. Let us consider some of the
● Fraction
Representations of Fractions on a Number Line
Fraction as Division
Types of Fractions
Conversion of Mixed Fractions into Improper Fractions
Conversion of Improper Fractions into Mixed Fractions
Equivalent Fractions
Interesting Fact about Equivalent Fractions
Fractions in Lowest Terms
Like and Unlike Fractions
Comparing Like Fractions
Comparing Unlike Fractions
Addition and Subtraction of Like Fractions
Addition and Subtraction of Unlike Fractions
Inserting a Fraction between Two Given Fractions
Numbers Page
6th Grade Page
From Equivalent Fractions to HOME PAGE
Didn't find what you were looking for? Or want to know more information
about Math Only Math.
Use this Google Search to find what you need.
Share this page:
What’s this?
|
|
New! Comments
Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.