Comparing Unlike Fractions

In comparing unlike fractions, we first convert them into like fractions by using the following steps and then compare them.

Step I:

Obtain the denominators of the fractions and find their LCM (least common multiple).


Step II:

Each fractions are converted to its equivalent fraction with denominator equal to the LCM (least common multiple) obtained in Step I.


Step III:

Compare the numerators of the equivalent fractions whose denominators are same.

Solved Examples on Comparing Unlike Fractions:

1. Which is larger \(\frac{3}{4}\) or \(\frac{5}{12}\)?

Solution:

Let us first find the LCM (least common multiple) of the denominators 4 and 12.

We have,

Comparing Unlike Fractions


Therefore, LCM (least common multiple) of 4 and 12 is 2 × 2 × 3 = 12.

Now we convert the given fractions to equivalent fractions with denominator 12

We have,

\(\frac{3}{4}\) = \(\frac{3 × 3}{4 × 3}\) = \(\frac{9}{12}\)

\(\frac{5}{12}\) = \(\frac{5 × 1}{12 × 1}\) = \(\frac{5}{12}\)


Now we will observe the numerator, that is 9 > 5.

So, \(\frac{9}{12}\) > \(\frac{5}{12}\)

Therefore, \(\frac{3}{4}\) > \(\frac{5}{12}\).



2. Compare \(\frac{7}{8}\) and \(\frac{5}{6}\).

Solution:

First we find the LCM of denominators .

We have,

Comparing Unlike Fractions


Therefore, LCM (least common multiple) = 2 × 2 × 2 × 3 = 24.

Now, we convert each fraction into equivalent fraction with 24 as its denominator.

We have,

\(\frac{7}{8}\) = \(\frac{7 × 3}{8 × 3}\) = \(\frac{21}{24}\); [since, 24 ÷ 8 = 3]

\(\frac{5}{6}\) = \(\frac{5 × 4}{6 × 4}\) = \(\frac{20}{24}\); [since 24 ÷ 6 = 4]


Now we will observe the numerator, that is 20 < 21

So, \(\frac{20}{24}\) < \(\frac{21}{24}\)

Therefore, \(\frac{5}{6}\) < \(\frac{7}{8}\).


3. Arrange the fractions \(\frac{5}{8}\), \(\frac{5}{6}\), \(\frac{7}{4}\), \(\frac{3}{5}\) in ascending order.

Solution:

Let us first find the LCM (least common multiple) of the denominators:

We have,

Comparing Unlike Fractions


Therefore, LCM (least common multiple) = 2 × 2 × 2 × 3 × 5 = 120. Now, we convert each fraction into equivalent fraction with 120 as its denominator.

We have,

\(\frac{5}{8}\) = \(\frac{5 × 15}{8 × 15}\) = \(\frac{75}{120}\), [since 120 ÷ 8 = 15].

\(\frac{5}{6}\) = \(\frac{5 × 20}{6 × 20}\) = \(\frac{100}{120}\), [since 120 ÷ 6 = 20].

\(\frac{7}{4}\) = \(\frac{7 × 30}{4 × 30}\) = \(\frac{210}{120}\), [since 120 ÷ 4 = 30].

\(\frac{3}{5}\) = \(\frac{3 × 24}{5 × 24}\) = \(\frac{72}{120}\), [since 120 ÷ 5 = 24].


Now we will observe the numerator, that is 72 < 75 < 100 < 210.

So, \(\frac{72}{120}\) < \(\frac{75}{120}\) < \(\frac{100}{120}\) < \(\frac{210}{120}\).

Therefore, \(\frac{3}{5}\), \(\frac{5}{8}\), \(\frac{5}{6}\), \(\frac{7}{4}\).



4. Arrange the following fractions in descending order \(\frac{3}{8}\), \(\frac{5}{6}\), \(\frac{2}{4}\), \(\frac{1}{3}\), \(\frac{6}{8}\).

Solution:

We observe that the given fractions neither have common denominator nor common numerator.

So, first we convert them into like fractions i.e. fractions having common denominator. For this, we first find the LCM (least common multiple) of the denominators of the given fractions.

Denominators are 8, 6, 4, 3, 8.

We have,

Comparing Unlike Fractions

Therefore, LCM (least common multiple) = 2 × 2 × 2 × 3 = 24.

Now, we convert each fraction into equivalent fraction with 24 as its denominator.

Thus,

\(\frac{3}{8}\) = \(\frac{3 × 3}{8 × 3}\) = \(\frac{9}{24}\); [since 24 ÷ 8 = 3]

\(\frac{5}{6}\) = \(\frac{5 × 4}{6 × 4}\) = \(\frac{20}{24}\) ; [since 24 ÷ 6 = 4]

\(\frac{2}{4}\)= \(\frac{2 × 6}{4 × 6}\) = \(\frac{12}{24}\) ; [since 24 ÷ 4 = 6]

\(\frac{1}{3}\)= \(\frac{1 × 8}{3 × 8}\) = \(\frac{8}{24}\) ; [since 24 ÷ 3 = 8]

\(\frac{6}{8}\) = \(\frac{6 × 3}{8 × 3}\) = \(\frac{18}{24}\) ; [since 24 ÷ 8 = 3]


Now we will observe the numerator, that is 20 > 18 > 12 > 9 > 8.


So, \(\frac{20}{24}\) > \(\frac{18}{24}\) > \(\frac{12}{24}\)  > \(\frac{9}{24}\) > \(\frac{8}{24}\) .

Therefore, \(\frac{5}{6}\) > \(\frac{6}{8}\) > \(\frac{2}{4}\) > \(\frac{3}{8}\) > \(\frac{1}{3}\) 


Cross Multiplication Method of Comparing Two Unlike Fractions:

Let \(\frac{a}{b}\) and \(\frac{c}{d}\) be the two given fractions. To compare these fractions, we cross multiply: as shown:

Comparing Two Unlike Fractions

Then, we find the cross products ad and bc.

(i) ad > bc then \(\frac{a}{b}\) > \(\frac{c}{d}\)

(ii) ad < bc then \(\frac{a}{b}\) < \(\frac{c}{d}\)

(iii) If ad = bc then \(\frac{a}{b}\) = \(\frac{c}{d}\)


1. Compare \(\frac{2}{8}\) and \(\frac{3}{5}\)

Solution:

We can compare the given fractions by cross multiplication method easily.

2 × 5 = 10 and 3 × 8 = 24

Therefore, 2 × 5 < 3 × 8

i.e., \(\frac{2}{8}\) < \(\frac{3}{5}\)


We can also compare the given fractions by converting them to like fractions.

The LCM of denominators 8 and 5 is 40.

Therefore, we convert \(\frac{2}{8}\) and \(\frac{3}{5}\) into like fractions each having denominator 40.

\(\frac{2}{8}\) = \(\frac{2 × 5}{8 × 5}\) = \(\frac{10}{40}\) and \(\frac{3}{5}\) = \(\frac{3 × 8}{5 × 8}\) = \(\frac{24}{40}\)

Now \(\frac{10}{40}\) and \(\frac{24}{40}\) are like fractions.

Clearly, 10 < 24.

Therefore, \(\frac{10}{40}\) < \(\frac{24}{40}\),

i.e., \(\frac{2}{8}\) < \(\frac{3}{5}\).

Comparing Unlike Fractions

To compare two unlike fractions, we first convert them to like fractions.

1. Compare \(\frac{7}{12}\) and \(\frac{5}{18}\).

Solution:

Let us first convert both fractions to like fractions and then compare.

LCM of denominators 12 and 18 is 36.

Divide 36 by 12, we get 3. Now, multiply both numerators and denominator of the fraction \(\frac{7}{12}\) by 3.

\(\frac{7 × 3}{12 × 3}\) = \(\frac{21}{36}\)

Divide 36 by denominator of the second fraction. i.e. 18, we get 2.

Multiply numerator and denominator of the fraction \(\frac{5}{18}\) by 2.

\(\frac{5 × 2}{18 × 2}\) = \(\frac{10}{36}\)

Compare the two fractions \(\frac{21}{36}\) and \(\frac{10}{36}\). Here 21 > 10. Thus, \(\frac{7}{12}\) > \(\frac{5}{18}\).


Alternate Method:

We can compare unlike fractions by cross multiplication in the following way.

Compare two Unlike Fractions

Here, 7 × 18 > 12 × 5; 126 > 60

So, \(\frac{7}{12}\) > \(\frac{5}{18}\)


2. Arrange the following fractions in ascending order \(\frac{1}{4}\), \(\frac{3}{2}\), \(\frac{7}{8}\), \(\frac{1}{16}\)

Solution: LCM of denominators 4, 2, 8 and 16 = 16

Here, the given fractions can be written as

\(\frac{1}{4}\) = \(\frac{1 × 4}{4 × 4}\) = \(\frac{4}{16}\)

\(\frac{3}{2}\) = \(\frac{3 × 8}{2 × 8}\) = \(\frac{24}{16}\)

\(\frac{7}{8}\) = \(\frac{7 × 2}{8 × 2}\) = \(\frac{14}{16}\)

\(\frac{1}{16}\) = \(\frac{1 × 1}{16 × 1}\) = \(\frac{1}{16}\)

Ascending order is \(\frac{1}{16}\) < \(\frac{4}{16}\) < \(\frac{14}{16}\) < \(\frac{24}{16}\)

                        or, \(\frac{1}{16}\) < \(\frac{1}{4}\) < \(\frac{7}{8}\) < \(\frac{3}{2}\)


Questions and Answers on Comparing Unlike Fractions:

1. Compare the given fractions by putting the right sign <, > or =.

(i) \(\frac{1}{5}\) ___ \(\frac{1}{11}\)

(ii) \(\frac{7}{6}\) ___ \(\frac{4}{6}\)

(iii) \(\frac{3}{18}\) ___ \(\frac{3}{15}\)

(iv) \(\frac{2}{3}\) ___ \(\frac{3}{4}\)

(v) \(\frac{6}{12}\) ___ \(\frac{8}{16}\)

(vi) \(\frac{5}{5}\) ___ \(\frac{5}{7}\)

(vii) \(\frac{5}{6}\) ___ \(\frac{12}{18}\)

(viii) \(\frac{10}{15}\) ___ \(\frac{14}{21}\)

(ix) \(\frac{2}{7}\) ___ \(\frac{5}{13}\)


Answers:

(i) >

(ii) >

(iii) <

(iv) <

(v) =

(vi) >

(vii) >

(viii) =

(ix) <


2. Arrange the given fractions in ascending order.

(i) \(\frac{3}{6}\), \(\frac{3}{8}\), \(\frac{3}{4}\)

(ii) \(\frac{1}{16}\), \(\frac{1}{4}\), \(\frac{1}{2}\)

(iii) \(\frac{1}{2}\), \(\frac{3}{4}\), \(\frac{5}{8}\)

(iv) \(\frac{2}{5}\), \(\frac{3}{4}\), \(\frac{3}{5}\)


Answers:

(i) \(\frac{3}{8}\), \(\frac{3}{6}\), \(\frac{3}{4}\)

(ii) \(\frac{1}{16}\), \(\frac{1}{4}\), \(\frac{1}{2}\)

(iii) \(\frac{1}{2}\), \(\frac{5}{8}\), \(\frac{3}{4}\)

(iv) \(\frac{2}{5}\), \(\frac{3}{5}\), \(\frac{3}{4}\)


Word Problems on Comparing Unlike Fractions:

3. Robert ate \(\frac{9}{22}\) part of the pizza and Maria ate \(\frac{5}{11}\) part of the pizza. Who ate the greater part of the pizza? What fraction of pizza was finished by the two girls?

Solution:

Robert ate \(\frac{9}{22}\) part of the pizza.

Maria ate \(\frac{5}{11}\) part of the pizza.

Let us first convert both fractions to like fractions and then compare.

Let us find the LCM of the denominators 22 and 11. 

The LCM of 22 and 11 is 22.

\(\frac{9}{22}\) = \(\frac{9 × 1}{22 × 1}\) = \(\frac{9}{22}\)

\(\frac{5}{11}\) = \(\frac{5 × 2}{11 × 2}\) = \(\frac{10}{22}\)

Compare the two fractions \(\frac{9}{22}\) and \(\frac{10}{22}\).

Here 10 > 9. Thus, \(\frac{5}{11}\) > \(\frac{9}{22}\).

Maria ate the greater part of the pizza.


Now add the two fractions\(\frac{9}{22}\) + \(\frac{5}{11}\)

We get the like fractions \(\frac{9}{22}\) and \(\frac{5}{22}\).

Now, \(\frac{9}{22}\) + \(\frac{10}{22}\)       

= \(\frac{9 + 10}{22}\)       

= \(\frac{19}{22}\)

Therefore, \(\frac{19}{22}\) of the pizza was finished by the two girls?


3. Ron covered a distance of \(\frac{5}{6}\) km and Jon covered a distance of \(\frac{3}{4}\) km. Who covered the greater distance?

Answer: Ron 

4. Adrian cycled for \(\frac{62}{8}\) km and Steven cycled \(\frac{27}{4}\) km during the weekend. Who cycled more and by how much?

Answer: Adrian, 1 km 

You might like these

● Fraction





Numbers Page

6th Grade Page

From Comparing Unlike Fractions to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Dec 04, 24 01:30 AM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More

  2. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Dec 04, 24 01:07 AM

    Time Duration Example
    Time duration tells us how long it takes for an activity to complete. We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton…

    Read More

  3. Worksheet on Subtraction of Money | Real-life Word Problems | Answers

    Dec 04, 24 12:45 AM

    Worksheet on Subtraction of Money
    Practice the questions given in the worksheet on subtraction of money by using without conversion and by conversion method (without regrouping and with regrouping). Note: Arrange the amount of rupees…

    Read More

  4. Worksheet on Addition of Money | Questions on Adding Amount of Money

    Dec 04, 24 12:06 AM

    Worksheet on Addition of Money
    Practice the questions given in the worksheet on addition of money by using without conversion and by conversion method (without regrouping and with regrouping). Note: Arrange the amount of money in t…

    Read More

  5. Worksheet on Money | Conversion of Money from Rupees to Paisa

    Dec 03, 24 11:37 PM

    Worksheet on Money
    Practice the questions given in the worksheet on money. This sheet provides different types of questions where students need to express the amount of money in short form and long form

    Read More