Fractions in Ascending Order

We will discuss here how to arrange the fractions in ascending order.


Solved examples for arranging in ascending order:

1. Let us arrange the fractions \(\frac{5}{16}\), \(\frac{9}{16}\), \(\frac{8}{16}\) and \(\frac{7}{16}\) in ascending order.

We know that above fractions are like fractions. We can arrange them in ascending order by comparing the numerators of each fraction. We can also compare these fractions by comparing the shaded parts in the given figures.

Comparison Fractions

\(\frac{9}{16}\) > \(\frac{8}{16}\) > \(\frac{7}{16}\) > \(\frac{5}{16}\).

Hence, the ascending order is \(\frac{5}{16}\), \(\frac{7}{16}\), \(\frac{8}{16}\) and \(\frac{9}{16}\).

2. Arrange the following fractions 5/6, 8/9, 2/3 in ascending order.

First we find the L.C.M. of the denominators of the fractions to make the denominators same.

L.C.M. of 3, 6 and 9



L.C.M. = 3 × 2 × 3 × 1 = 18

Now to make the fraction as like fractions divide the L.C.M. by the denominator of fractions, then multiply both the numerator and denominator of fraction with the number get after dividing L.C.M.

As in fraction 5/6 denominator is 6.

Divide 18 ÷ 6 = 3

Now, multiply both numerator and denominator by 3 = 5 × 3/6 × 3 = 15/18

Similarly, 8/9 = 8 × 2/9 × 2 = 16/18 (because 18 ÷ 9 = 2)

and 2/3 = 2 × 6/3 × 6 = 12/18 (because 18 ÷ 3 = 6)

Now, we compare the like fractions 15/18, 16/18 and 12/18

Comparing numerators, we find that 16 > 15 > 12

Therefore, 16/18 > 15/18 > 12/ 18

or, 8/9 > 5/6 > 2/3

or, 2/3 < 5/6 < 8/9

The ascending order of the fractions is 2/3, 5/6, 8/9.


3. Arrange the following fractions 1/2, 3/8, 2/3, 4/5 in ascending order.

First we find the L.C.M. of the denominators of the fractions to make the denominators same.

L.C.M. of 2, 8, 3 and 5 = 120

Now to make the fraction as like fractions divide the L.C.M. by the denominator of fractions, then multiply both the numerator and denominator of fraction with the number get after dividing L.C.M.

As in fraction 1/2 denominator is 2.

Divide 120 ÷ 2 = 60

Now, multiply both numerator and denominator by 60 = 1 × 60/2 × 60 = 60/120

Similarly, 3/8 = 3 × 15/8 × 15 = 45/120 (because 120 ÷ 8 = 15)

2/3 = 2 × 40/3 × 40 = 80/120 (because 120 ÷ 3 = 40)

and 4/5 = 4 × 24/5 × 24 = 96/120 (because 120 ÷ 5 = 24)

Now, we compare the like fractions 60/120, 45/120, 80/120 and 96/120

Comparing numerators, we find that 96 > 80 > 60 > 45

Therefore, 96/120 > 80/120 > 60/120 > 45/120

or 4/5 > 2/3 > 1/2 > 3/8

or 3/8 < 1/2 < 2/3 < 4/5

The ascending order of the fractions is 3/8 < 1/2 < 2/3 < 4/5.


4. Arrange the following fractions in ascending order of magnitude.

\(\frac{3}{4}\), \(\frac{5}{8}\), \(\frac{4}{6}\), \(\frac{2}{9}\)

L.C.M. of 4, 8, 6 and 9

= 2 × 2 × 3 × 2 × 3 = 72

Arrange the following fractions

\(\frac{3 × 18}{4 × 18}\) = \(\frac{54}{72}\)

Therefore, \(\frac{3}{4}\) = \(\frac{54}{72}\)

\(\frac{5 × 9}{8 × 9}\) = \(\frac{45}{72}\)

Therefore, \(\frac{5}{8}\) = \(\frac{45}{72}\)

\(\frac{4 × 12}{6 × 12}\) = \(\frac{48}{72}\)

Therefore, \(\frac{4}{6}\) = \(\frac{48}{72}\)

\(\frac{2 × 8}{9 × 8}\) = \(\frac{16}{72}\)

Therefore, \(\frac{2}{9}\) = \(\frac{16}{72}\)

Ascending order: \(\frac{16}{72}\), \(\frac{45}{72}\), \(\frac{48}{72}\), \(\frac{54}{72}\)

                    i.e., \(\frac{2}{9}\), \(\frac{5}{8}\), \(\frac{4}{6}\), \(\frac{3}{4}\)   


5. Arrange the following fractions in ascending order of magnitude.

4\(\frac{1}{2}\), 3\(\frac{1}{2}\), 5\(\frac{1}{4}\), 1\(\frac{1}{6}\), 2\(\frac{1}{4}\)

Observe the whole numbers.

4, 3, 5, 1, 2

1 < 2 < 3 < 4 < 5

Therefore, ascending order: 1\(\frac{1}{6}\), 2\(\frac{1}{4}\), 3\(\frac{1}{2}\), 4\(\frac{1}{2}\), 5\(\frac{1}{4}\)

 

6. Arrange the following fractions in ascending order of magnitude.

3\(\frac{1}{4}\), 3\(\frac{1}{2}\), 2\(\frac{1}{6}\), 4\(\frac{1}{4}\), 8\(\frac{1}{9}\)

Observe the whole numbers.

3, 3, 2, 4, 8

Since the whole number part of 3\(\frac{1}{4}\) and 3\(\frac{1}{2}\) are same, compare them.

Which is bigger? 3\(\frac{1}{4}\) or 3\(\frac{1}{2}\)? \(\frac{1}{4}\) or \(\frac{1}{2}\)?

L.C.M. of 4, 2 = 4

\(\frac{1 × 1}{4 × 1}\) = \(\frac{1}{4}\)                 \(\frac{1 × 2}{2 × 2}\) = \(\frac{2}{4}\)

Therefore, 3\(\frac{1}{4}\) = 3\(\frac{1}{4}\)       3\(\frac{1}{2}\) = 3\(\frac{2}{4}\)

Therefore, 3\(\frac{2}{4}\) > 3\(\frac{1}{4}\)       i.e., 3\(\frac{1}{2}\) > 3\(\frac{1}{4}\)

Therefore, Ascending order: 2\(\frac{1}{6}\), 3\(\frac{1}{4}\), 3\(\frac{1}{2}\), 4\(\frac{3}{4}\), 8\(\frac{1}{9}\) 


Questions and Answers on Fractions in Ascending Order:

1. Arrange the given fractions in ascending order:

(i) \(\frac{13}{22}\), \(\frac{18}{22}\), \(\frac{10}{22}\), \(\frac{3}{22}\)

(ii) \(\frac{33}{42}\), \(\frac{16}{42}\), \(\frac{39}{42}\), \(\frac{9}{42}\)


Answers:

1. (i) \(\frac{3}{22}\), \(\frac{10}{22}\), \(\frac{13}{22}\), \(\frac{18}{22}\)

(ii) \(\frac{9}{42}\), \(\frac{16}{42}\), \(\frac{33}{42}\), \(\frac{39}{42}\)


2. Arrange the following fractions in ascending order of magnitude:

(i) \(\frac{7}{7}\), \(\frac{3}{7}\), \(\frac{1}{7}\), \(\frac{4}{7}\), \(\frac{2}{7}\), \(\frac{5}{7}\)

(ii) \(\frac{1}{2}\), \(\frac{3}{2}\), \(\frac{8}{3}\), \(\frac{4}{6}\), \(\frac{9}{2}\), \(\frac{1}{3}\)


Answer:

2. (i) \(\frac{1}{7}\), (\frac{2}{7}\), \(\frac{3}{7}\), \(\frac{4}{7}\), \(\frac{5}{7}\), \(\frac{7}{7}\)

(ii) \(\frac{1}{3}\), \(\frac{1}{2}\), \(\frac{4}{6}\), \(\frac{3}{2}\), \(\frac{8}{3}\), (\frac{9}{2}\)

Related Concept

Fraction of a Whole Numbers

Representation of a Fraction

Equivalent Fractions

Properties of Equivalent Fractions

Like and Unlike Fractions

Comparison of Like Fractions

Comparison of Fractions having the same Numerator

Types of Fractions

Changing Fractions

Conversion of Fractions into Fractions having Same Denominator

Conversion of a Fraction into its Smallest and Simplest Form

Addition of Fractions having the Same Denominator

Subtraction of Fractions having the Same Denominator

Addition and Subtraction of Fractions on the Fraction Number Line





4th Grade Math Activities

From Fractions in Ascending Order to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. What is a Triangle? | Types of Triangle | Scalene Triangle | Isosceles

    Jun 17, 24 11:22 PM

    What is a triangle
    A simple closed curve or a polygon formed by three line-segments (sides) is called a triangle. The above shown shapes are triangles. The symbol of a triangle is ∆. A triangle is a polygon with three s…

    Read More

  2. Interior and Exterior of an Angle | Interior Angle | Exterior Angle

    Jun 16, 24 05:20 PM

    Interior of an Angle
    Interior and exterior of an angle is explained here. The shaded portion between the arms BA and BC of the angle ABC can be extended indefinitely.

    Read More

  3. Angles | Magnitude of an Angle | Measure of an angle | Working Rules

    Jun 16, 24 04:12 PM

    Naming an Angle
    Angles are very important in our daily life so it’s very necessary to understand about angle. Two rays meeting at a common endpoint form an angle. In the adjoining figure, two rays AB and BC are calle

    Read More

  4. What is a Polygon? | Simple Closed Curve | Triangle | Quadrilateral

    Jun 16, 24 02:34 PM

    Square - Polygon
    What is a polygon? A simple closed curve made of three or more line-segments is called a polygon. A polygon has at least three line-segments.

    Read More

  5. Simple Closed Curves | Types of Closed Curves | Collection of Curves

    Jun 16, 24 12:31 PM

    Closed Curves Examples
    In simple closed curves the shapes are closed by line-segments or by a curved line. Triangle, quadrilateral, circle, etc., are examples of closed curves.

    Read More