Fractions in Ascending Order

We will discuss here how to arrange the fractions in ascending order.


Solved examples for arranging in ascending order:

1. Let us arrange the fractions \(\frac{5}{16}\), \(\frac{9}{16}\), \(\frac{8}{16}\) and \(\frac{7}{16}\) in ascending order.

We know that above fractions are like fractions. We can arrange them in ascending order by comparing the numerators of each fraction. We can also compare these fractions by comparing the shaded parts in the given figures.

Comparison Fractions

\(\frac{9}{16}\) > \(\frac{8}{16}\) > \(\frac{7}{16}\) > \(\frac{5}{16}\).

Hence, the ascending order is \(\frac{5}{16}\), \(\frac{7}{16}\), \(\frac{8}{16}\) and \(\frac{9}{16}\).

2. Arrange the following fractions \(\frac{5}{6}\), \(\frac{8}{9}\), \(\frac{2}{3}\) in ascending order.

First we find the L.C.M. of the denominators of the fractions to make the denominators same.

L.C.M. of 3, 6 and 9



L.C.M. = 3 × 2 × 3 × 1 = 18

Now to make the fraction as like fractions divide the L.C.M. by the denominator of fractions, then multiply both the numerator and denominator of fraction with the number get after dividing L.C.M.

As in fraction \(\frac{5}{6}\) denominator is 6.

Divide 18 ÷ 6 = 3

Now, multiply both numerator and denominator by 3 = \(\frac{5 × 3}{6 × 3}\) = \(\frac{15}{18}\)

Similarly, \(\frac{8}{9}\) = \(\frac{8 × 2}{9 × 2}\) = \(\frac{16}{18}\) (because 18 ÷ 9 = 2)

and \(\frac{2}{3}\) = \(\frac{2 × 6}{3 × 6}\) = \(\frac{12}{18}\) (because 18 ÷ 3 = 6)

Now, we compare the like fractions \(\frac{15}{18}\), \(\frac{16}{18}\) and \(\frac{12}{18}\)

Comparing numerators, we find that 16 > 15 > 12

Therefore, \(\frac{16}{18}\) > \(\frac{15}{18}\) > \(\frac{12}{18}\)

or, \(\frac{8}{9}\) > \(\frac{5}{6}\) > \(\frac{2}{3}\)

or, \(\frac{2}{3}\) < \(\frac{5}{6}\) < \(\frac{8}{9}\)

The ascending order of the fractions is \(\frac{2}{3}\), \(\frac{5}{6}\), \(\frac{8}{9}\).


3. Arrange the following fractions \(\frac{1}{2}\), \(\frac{3}{8}\), \(\frac{2}{3}\), \(\frac{4}{5}\) in ascending order.

First we find the L.C.M. of the denominators of the fractions to make the denominators same.

L.C.M. of 2, 8, 3 and 5 = 120

Now to make the fraction as like fractions divide the L.C.M. by the denominator of fractions, then multiply both the numerator and denominator of fraction with the number get after dividing L.C.M.

As in fraction \(\frac{1}{2}\) denominator is 2.

Divide 120 ÷ 2 = 60

Now, multiply both numerator and denominator by 60 = \(\frac{1 × 60}{2 × 60}\) = \(\frac{60}{120}\)

Similarly, \(\frac{3}{8}\) = \(\frac{3 × 15}{8 × 15}\) = \(\frac{45}{120}\) (because 120 ÷ 8 = 15)

\(\frac{2}{3}\) = \(\frac{2 × 40}{3 × 40}\) = \(\frac{80}{120}\) (because 120 ÷ 3 = 40)

and \(\frac{4}{5}\) = \(\frac{4 × 24}{5 × 24}\) = \(\frac{96}{120}\) (because 120 ÷ 5 = 24)

Now, we compare the like fractions \(\frac{60}{120}\), \(\frac{45}{120}\), \(\frac{80}{120}\) and \(\frac{96}{120}\)

Comparing numerators, we find that 96 > 80 > 60 > 45

Therefore, \(\frac{96}{120}\) > \(\frac{80}{120}\) > \(\frac{60}{120}\) > \(\frac{45}{120}\)

or \(\frac{4}{5}\) > \(\frac{2}{3}\) > \(\frac{1}{2}\) > \(\frac{3}{8}\) 

or \(\frac{3}{8}\)  < \(\frac{1}{2}\) < \(\frac{2}{3}\) < \(\frac{4}{5}\)

The ascending order of the fractions is \(\frac{3}{8}\) < \(\frac{1}{2}\) < \(\frac{2}{3}\) < \(\frac{4}{5}\).


4. Arrange the following fractions in ascending order of magnitude.

\(\frac{3}{4}\), \(\frac{5}{8}\), \(\frac{4}{6}\), \(\frac{2}{9}\)

L.C.M. of 4, 8, 6 and 9

= 2 × 2 × 3 × 2 × 3 = 72

Arrange the following fractions

\(\frac{3 × 18}{4 × 18}\) = \(\frac{54}{72}\)

Therefore, \(\frac{3}{4}\) = \(\frac{54}{72}\)

\(\frac{5 × 9}{8 × 9}\) = \(\frac{45}{72}\)

Therefore, \(\frac{5}{8}\) = \(\frac{45}{72}\)

\(\frac{4 × 12}{6 × 12}\) = \(\frac{48}{72}\)

Therefore, \(\frac{4}{6}\) = \(\frac{48}{72}\)

\(\frac{2 × 8}{9 × 8}\) = \(\frac{16}{72}\)

Therefore, \(\frac{2}{9}\) = \(\frac{16}{72}\)

Ascending order: \(\frac{16}{72}\), \(\frac{45}{72}\), \(\frac{48}{72}\), \(\frac{54}{72}\)

                    i.e., \(\frac{2}{9}\), \(\frac{5}{8}\), \(\frac{4}{6}\), \(\frac{3}{4}\)   


5. Arrange the following fractions in ascending order of magnitude.

4\(\frac{1}{2}\), 3\(\frac{1}{2}\), 5\(\frac{1}{4}\), 1\(\frac{1}{6}\), 2\(\frac{1}{4}\)

Observe the whole numbers.

4, 3, 5, 1, 2

1 < 2 < 3 < 4 < 5

Therefore, ascending order: 1\(\frac{1}{6}\), 2\(\frac{1}{4}\), 3\(\frac{1}{2}\), 4\(\frac{1}{2}\), 5\(\frac{1}{4}\)

 

6. Arrange the following fractions in ascending order of magnitude.

3\(\frac{1}{4}\), 3\(\frac{1}{2}\), 2\(\frac{1}{6}\), 4\(\frac{1}{4}\), 8\(\frac{1}{9}\)

Observe the whole numbers.

3, 3, 2, 4, 8

Since the whole number part of 3\(\frac{1}{4}\) and 3\(\frac{1}{2}\) are same, compare them.

Which is bigger? 3\(\frac{1}{4}\) or 3\(\frac{1}{2}\)? \(\frac{1}{4}\) or \(\frac{1}{2}\)?

L.C.M. of 4, 2 = 4

\(\frac{1 × 1}{4 × 1}\) = \(\frac{1}{4}\)                 \(\frac{1 × 2}{2 × 2}\) = \(\frac{2}{4}\)

Therefore, 3\(\frac{1}{4}\) = 3\(\frac{1}{4}\)       3\(\frac{1}{2}\) = 3\(\frac{2}{4}\)

Therefore, 3\(\frac{2}{4}\) > 3\(\frac{1}{4}\)       i.e., 3\(\frac{1}{2}\) > 3\(\frac{1}{4}\)

Therefore, Ascending order: 2\(\frac{1}{6}\), 3\(\frac{1}{4}\), 3\(\frac{1}{2}\), 4\(\frac{3}{4}\), 8\(\frac{1}{9}\) 


Worksheet on Fractions in Ascending Order:

1. Arrange the given fractions in ascending order:

(i) \(\frac{13}{22}\), \(\frac{18}{22}\), \(\frac{10}{22}\), \(\frac{3}{22}\)

(ii) \(\frac{33}{42}\), \(\frac{16}{42}\), \(\frac{39}{42}\), \(\frac{9}{42}\)


Answers:

1. (i) \(\frac{3}{22}\), \(\frac{10}{22}\), \(\frac{13}{22}\), \(\frac{18}{22}\)

(ii) \(\frac{9}{42}\), \(\frac{16}{42}\), \(\frac{33}{42}\), \(\frac{39}{42}\)


2. Arrange the following fractions in ascending order of magnitude:

(i) \(\frac{7}{7}\), \(\frac{3}{7}\), \(\frac{1}{7}\), \(\frac{4}{7}\), \(\frac{2}{7}\), \(\frac{5}{7}\)

(ii) \(\frac{1}{2}\), \(\frac{3}{2}\), \(\frac{8}{3}\), \(\frac{4}{6}\), \(\frac{9}{2}\), \(\frac{1}{3}\)


Answer:

2. (i) \(\frac{1}{7}\), \(\frac{2}{7}\), \(\frac{3}{7}\), \(\frac{4}{7}\), \(\frac{5}{7}\), \(\frac{7}{7}\)

(ii) \(\frac{1}{3}\), \(\frac{1}{2}\), \(\frac{4}{6}\), \(\frac{3}{2}\), \(\frac{8}{3}\), \(\frac{9}{2}\)


3. Arrange the following fractions in ascending order:

(i) \(\frac{2}{3}\), \(\frac{5}{3}\), \(\frac{1}{3}\) 

(ii) \(\frac{1}{4}\), \(\frac{1}{6}\), \(\frac{5}{12}\)

(iii) \(\frac{3}{15}\), \(\frac{7}{15}\), \(\frac{4}{15}\), \(\frac{9}{15}\)

(iv) \(\frac{3}{8}\), \(\frac{1}{16}\), \(\frac{7}{4}\), \(\frac{5}{18}\)


Answer:

3. (i) \(\frac{1}{3}\) < \(\frac{2}{3}\) < \(\frac{5}{3}\) 

(ii) \(\frac{5}{12}\) < \(\frac{1}{6}\) < \(\frac{1}{4}\)

(iii) \(\frac{3}{15}\) < \(\frac{4}{15}\) < \(\frac{7}{15}\) < \(\frac{9}{15}\)

(iv) \(\frac{1}{16}\) < \(\frac{5}{18}\) < \(\frac{3}{8}\) < \(\frac{7}{4}\)

You might like these

Related Concept

Fraction of a Whole Numbers

Representation of a Fraction

Equivalent Fractions

Properties of Equivalent Fractions

Like and Unlike Fractions

Comparison of Like Fractions

Comparison of Fractions having the same Numerator

Types of Fractions

Changing Fractions

Conversion of Fractions into Fractions having Same Denominator

Conversion of a Fraction into its Smallest and Simplest Form

Addition of Fractions having the Same Denominator

Subtraction of Fractions having the Same Denominator

Addition and Subtraction of Fractions on the Fraction Number Line





4th Grade Math Activities

From Fractions in Ascending Order to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Worksheets on Comparison of Numbers | Find the Greatest Number

    Oct 10, 24 05:15 PM

    Comparison of Two Numbers
    In worksheets on comparison of numbers students can practice the questions for fourth grade to compare numbers. This worksheet contains questions on numbers like to find the greatest number, arranging…

    Read More

  2. Counting Before, After and Between Numbers up to 10 | Number Counting

    Oct 10, 24 10:06 AM

    Before After Between
    Counting before, after and between numbers up to 10 improves the child’s counting skills.

    Read More

  3. Expanded Form of a Number | Writing Numbers in Expanded Form | Values

    Oct 10, 24 03:19 AM

    Expanded Form of a Number
    We know that the number written as sum of the place-values of its digits is called the expanded form of a number. In expanded form of a number, the number is shown according to the place values of its…

    Read More

  4. Place Value | Place, Place Value and Face Value | Grouping the Digits

    Oct 09, 24 05:16 PM

    Place Value of 3-Digit Numbers
    The place value of a digit in a number is the value it holds to be at the place in the number. We know about the place value and face value of a digit and we will learn about it in details. We know th…

    Read More

  5. 3-digit Numbers on an Abacus | Learning Three Digit Numbers | Math

    Oct 08, 24 10:53 AM

    3-Digit Numbers on an Abacus
    We already know about hundreds, tens and ones. Now let us learn how to represent 3-digit numbers on an abacus. We know, an abacus is a tool or a toy for counting. An abacus which has three rods.

    Read More