In comparison of unlike fractions, we change the unlike fractions to like fractions and then compare.

Let us compare two fractions \(\frac{4}{7}\) and \(\frac{4}{9}\) which have same numerator.

Since 4 shaded parts of 7 is bigger than the 4 shaded parts of 9 therefore \(\frac{4}{7}\) > \(\frac{4}{9}\).

To compare two fractions with different numerators and different denominators, we multiply by a number to convert them to like fractions.

Let us consider some of the examples on comparing fractions
(i.e. unlike fractions).

**1.** Which one is greater, \(\frac{4}{7}\) or \(\frac{3}{5}\)?

First we convert these fractions into like fractions. To convert unlike fraction into like fraction first of all find the L.C.M. of their denominators.

L.C.M. of 7 and 5 = 35

Now, divide this L.C.M. by the denominator of both the fractions.

35 ÷ 7 = 5

35 ÷ 5 = 7

Multiply both the numerator and denominator with the number you get after dividing.

i.e., \(\frac{4 × 5}{7 × 5}\) = \(\frac{20}{35}\)

\(\frac{3 × 7}{5 × 7}\) = \(\frac{21}{35}\)

because \(\frac{21}{35}\) > \(\frac{20}{35}\)

So, \(\frac{3}{5}\) > \(\frac{4}{7}\)

We can compare two fractions by cross multiplication also.

Let us solve the above example by cross multiplication. Here, we cross multiply as follows.

4 × 5 = 20

3 × 7 = 21

Since, 21 > 20

Therefore, \(\frac{3}{5}\) > \(\frac{4}{7}\)

**2.** Compare 3\(\frac{2}{5}\) and 2\(\frac{3}{4}\).

First we convert these mixed numbers into improper fractions.

2\(\frac{3}{4}\) = \(\frac{4 × 2 + 3}{4}\) = \(\frac{11}{4}\)

3\(\frac{2}{5}\) = \(\frac{5 × 3 + 2}{5}\) = \(\frac{17}{5}\)

Now, we compare \(\frac{11}{4}\) and \(\frac{17}{5}\) by cross multiplication.

11 × 5 = 55 and 17 × 4 = 68

We see that 68 > 55.

Therefore, \(\frac{17}{5}\) > \(\frac{11}{4}\) or, 3\(\frac{2}{5}\) > 2\(\frac{3}{4}\)

**3.** Let us
compare \(\frac{5}{7}\) and \(\frac{3}{5}\).

\(\frac{5}{7}\) = \(\frac{5 × 5}{7 × 5}\) = \(\frac{25}{35}\)

Multiply the numerator and denominator by 5.

\(\frac{3}{5}\) = \(\frac{3 × 7}{5 × 7}\) = \(\frac{21}{35}\)

Multiply the numerator and denominator by 7.

Hence, \(\frac{25}{35}\) > \(\frac{21}{35}\)

Therefore, \(\frac{5}{7}\) > \(\frac{3}{5}\)

We will learn an alternative method i.e. cross multiply to compare the given fractions.

**4.** Let us
compare \(\frac{2}{3}\) and \(\frac{4}{5}\).

2 × 5 = 10 and 3 × 4 = 12

Since, 12 > 10, hence \(\frac{4}{5}\) > \(\frac{2}{3}\)

**Related Concept**

**● ****Representation
of a Fraction**

**● ****Properties
of Equivalent Fractions**

**● ****Comparison
of Like Fractions**

**● ****Comparison
of Fractions having the same Numerator**

**● ****Conversion
of Fractions into Fractions having Same Denominator**

**● ****Conversion
of a Fraction into its Smallest and Simplest Form**

**● ****Addition
of Fractions having the Same Denominator**

**● ****Subtraction
of Fractions having the Same Denominator**

**● ****Addition
and Subtraction of Fractions on the Fraction Number Line**

**4th Grade Math Activities**

**From Comparison of Unlike Fractions to HOME PAGE**

**Didn't find what you were looking for? Or want to know more information
about Math Only Math.
Use this Google Search to find what you need.**

## New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.