Dividing Fractions

We will discuss here about dividing fractions by a whole number, by a fractional number or by another mixed fractional number.


First let us recall how to find reciprocal of a fraction, we interchange the numerator and the denominator.

For example, the reciprocal of ¾ is 4/3.

Division of Fractions

Find the reciprocal of 3 ¾

The reciprocal of 3 ¾ is 4/15.

Division of Fractions Reciprocal

I. Division of a Fraction by a Whole Number:

4 ÷ 2 = 2 means, there are two 2’s in 4.

6 ÷ 2 = 3 means, there are two 2’s in 6.

Similarly 5 ÷ \(\frac{1}{2}\) means, how many halves are there in 5?

We know that \(\frac{1}{2}\) + \(\frac{1}{2}\) = 1

\(\frac{1}{2}\) + \(\frac{1}{2}\)   +

\(\frac{1}{2}\) + \(\frac{1}{2}\)   +

\(\frac{1}{2}\) + \(\frac{1}{2}\)   +

\(\frac{1}{2}\) + \(\frac{1}{2}\)   +

\(\frac{1}{2}\) + \(\frac{1}{2}\)

    1      + 

    1      + 

    1      + 

    1      + 

    1 

=   5

i.e. there are 10 halves in 5.

5 ÷ \(\frac{1}{2}\) = 5 × \(\frac{2}{1}\) = \(\frac{10}{1}\) = 10


For Example:

1. \(\frac{7}{10}\) ÷ 5 = \(\frac{7}{10}\) ÷ \(\frac{5}{1}\)

= \(\frac{7}{10}\) × \(\frac{1}{5}\)

= \(\frac{7 × 1}{10 × 5}\)

= \(\frac{7}{50}\)


2. What is \(\frac{10}{15}\) ÷ 5?

\(\frac{10}{15}\) ÷ \(\frac{5}{1}\)

= \(\frac{10}{15}\) × \(\frac{1}{5}\)

= \(\frac{2 × \not 5 × 1}{3 × \not 5 × 5}\)

= \(\frac{2}{15}\)

Prime Factors of 10, 5 and 3

              10 = 2 × 5

              15 = 3 × 5

                5 = 1 × 5


To divide a fraction by a number, multiply the fraction with the reciprocal of the number.

For example:

3. Divide 3/5 by 12

Solution:

3/5 ÷ 12

= 3/5 ÷ 12/1

= 3/5 × 1/12

= (3 × 1)/(5 × 12)

= 3/60

= 1/20


Step I: Find the reciprocal of the whole number and multiply with the fractional number as usual.

Step II: Express the product in its lowest terms.


4. Solve: 5/7 ÷ 10

= 5/7 ÷ 10/1

= 5/7 × 1/10

= (5 × 1)/(7 × 10)

= 5/70

Step I: Find the reciprocal of the whole number and multiply with the fractional number as usual.

Step II: Express the product in its lowest terms.


II. Division of a Fractional Number by a Fractional Number:

For example:

1. Divide 7/8 by 1/5

Solution:

7/8 ÷ 1/5

= 7/8 × 5/1

= (7 × 5)/(8 × 1)

= 35/8

= 4 3/8


Step I: Find reciprocal of 1/5.

Step II: Multiply 7/8 by it.

Step III: Express the product in its simplest form.


2. Divide: 5/9 ÷ 10/18

Solution:

5/9 ÷ 10/18

= 5/9 × 18/10

= (5 × 18)/(9 × 10)

= 90/90

= 1


Step I: Find reciprocal of 1/5.

Step II: Multiply 7/8 by it.

Step III: Express the product in its simplest form.

Division of a Fraction by a Fraction:

3. Divide \(\frac{3}{4}\) ÷ \(\frac{5}{3}\)

Step I: Multiply the first fraction with the reciprocal of the second fraction.

Reciprocal of \(\frac{5}{3}\) = \(\frac{3}{5}\)

Therefore, \(\frac{3}{4}\) ÷ \(\frac{5}{3}\)  = \(\frac{3}{4}\) × \(\frac{3}{5}\)

                           = \(\frac{3 × 3}{4 × 5}\)

                           = \(\frac{9}{20}\)

Step II: Reduce the fraction to the lowest terms. (if necessary)

4. Divide \(\frac{16}{27}\) ÷ \(\frac{4}{9}\)

Therefore, \(\frac{16}{27}\) ÷ \(\frac{4}{9}\) = \(\frac{16}{27}\) × \(\frac{9}{4}\); [Reciprocal of \(\frac{4}{9}\) = \(\frac{9}{4}\)]

                            = \(\frac{\not 2 × \not 2 × 2 × 2 × \not 3 × \not 3}{\not 3 × \not 3 × 3 × \not 2 × \not 2}\)

                            = \(\frac{4}{3}\)

                            = 1\(\frac{1}{3}\)

Prime Factors of 16, 27, 9 and 4

            16 = 2 × 2 × 2 × 2

            9 = 3 × 3

            27 = 3 × 3 × 3

            4 = 2 × 2


III. Division of a Mixed Number by another Mixed Number:

For example:

1. Divide 2 ¾ by 1 2/3

Solution:

2 ¾ ÷ 1 2/3

= 11/4 ÷ 5/3

= 11/4 × 3/5

= (11 × 3)/(4 × 5)

= 33/20

= 1 13/20


Express the mixed numbers as improper fractions and multiply as usual.


2. Divide: 2  4/17 ÷ 1  4/17

Solution:

2  4/17 ÷ 1  4/17

= 38/17 ÷ 21/17

= 38/17 × 17/21

= (38 × 17)/(17 × 21)

= 646/357

= 38/21

= 1 17/21


Express the mixed numbers as improper fractions and multiply as usual.


Questions and Answers on Dividing Fractions:

I. Divide the following.

(i) \(\frac{2}{6}\) ÷ \(\frac{1}{3}\)

(ii) \(\frac{5}{8}\) ÷ \(\frac{15}{16}\)

(iii) \(\frac{5}{6}\) ÷ 15

(iv) \(\frac{7}{8}\) ÷ 14

(v) \(\frac{2}{3}\) ÷ 6

(vi) 28 ÷ \(\frac{7}{4}\)

(vii) 2\(\frac{5}{6}\) ÷ 34

(viii) 9\(\frac{1}{2}\) ÷ \(\frac{38}{2}\)

(ix) 3\(\frac{1}{4}\) ÷ \(\frac{26}{28}\)

(x) 7\(\frac{1}{3}\) ÷ 1\(\frac{5}{6}\)

(xi) 2\(\frac{3}{5}\) ÷ 1\(\frac{11}{15}\)

(xii) 1\(\frac{1}{2}\) ÷ \(\frac{4}{7}\)

Related Concept

Fraction of a Whole Numbers

Representation of a Fraction

Equivalent Fractions

Properties of Equivalent Fractions

Like and Unlike Fractions

Comparison of Like Fractions

Comparison of Fractions having the same Numerator

Types of Fractions

Changing Fractions

Conversion of Fractions into Fractions having Same Denominator

Conversion of a Fraction into its Smallest and Simplest Form

Addition of Fractions having the Same Denominator

Subtraction of Fractions having the Same Denominator

Addition and Subtraction of Fractions on the Fraction Number Line




4th Grade Math Activities

From Dividing Fractions to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Divide by Repeated Subtraction | Division as Repeated Subtraction

    Jan 21, 25 09:09 AM

    Divide by Repeated Subtraction
    How to divide by repeated subtraction? We will learn how to find the quotient and remainder by the method of repeated subtraction a division problem may be solved.

    Read More

  2. Division Sharing and Grouping | Facts about Division | Basic Division

    Jan 21, 25 08:06 AM

    Sharing and Grouping
    We will learn division sharing and grouping. Share eight strawberries between four children. Let us distribute strawberries equally to all the four children one by one.

    Read More

  3. 3rd Grade Multiplication Worksheet | Grade 3 Multiplication Questions

    Jan 20, 25 02:31 PM

    3rd Grade Multiplication Riddle
    In 3rd Grade Multiplication Worksheet we will solve how to multiply 2-digit number by 1-digit number without regrouping, multiply 2-digit number by 1-digit number with regrouping, multiply 3-digit num…

    Read More

  4. 3rd Grade Math Worksheets |3rd Grade Math Sheets|3rd Grade Math Lesson

    Jan 20, 25 12:28 AM

    3rd Grade Math Worksheets
    3rd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students. Teachers and parents can also follow the worksheets to guide the students.

    Read More

  5. 3rd Grade Multiplication Word Problems Worksheet With Answers | Math

    Jan 19, 25 11:29 PM

    In 3rd Grade Multiplication Word Problems Worksheet we will solve different types of problems on multiplication, multiplication word problems on 3-digits number by 1-digit number and multiplication wo…

    Read More