Dividing Fractions

We will discuss here about dividing fractions by a whole number, by a fractional number or by another mixed fractional number.


First let us recall how to find reciprocal of a fraction, we interchange the numerator and the denominator.

For example, the reciprocal of ¾ is 4/3.

Division of Fractions

Find the reciprocal of 3 ¾

The reciprocal of 3 ¾ is 4/15.

Division of Fractions Reciprocal

I. Division of a Fraction by a Whole Number:

4 ÷ 2 = 2 means, there are two 2’s in 4.

6 ÷ 2 = 3 means, there are two 2’s in 6.

Similarly 5 ÷ \(\frac{1}{2}\) means, how many halves are there in 5?

We know that \(\frac{1}{2}\) + \(\frac{1}{2}\) = 1

\(\frac{1}{2}\) + \(\frac{1}{2}\)   +

\(\frac{1}{2}\) + \(\frac{1}{2}\)   +

\(\frac{1}{2}\) + \(\frac{1}{2}\)   +

\(\frac{1}{2}\) + \(\frac{1}{2}\)   +

\(\frac{1}{2}\) + \(\frac{1}{2}\)

    1      + 

    1      + 

    1      + 

    1      + 

    1 

=   5

i.e. there are 10 halves in 5.

5 ÷ \(\frac{1}{2}\) = 5 × \(\frac{2}{1}\) = \(\frac{10}{1}\) = 10


For Example:

1. \(\frac{7}{10}\) ÷ 5 = \(\frac{7}{10}\) ÷ \(\frac{5}{1}\)

= \(\frac{7}{10}\) × \(\frac{1}{5}\)

= \(\frac{7 × 1}{10 × 5}\)

= \(\frac{7}{50}\)


2. What is \(\frac{10}{15}\) ÷ 5?

\(\frac{10}{15}\) ÷ \(\frac{5}{1}\)

= \(\frac{10}{15}\) × \(\frac{1}{5}\)

= \(\frac{2 × \not 5 × 1}{3 × \not 5 × 5}\)

= \(\frac{2}{15}\)

Prime Factors of 10, 5 and 3

              10 = 2 × 5

              15 = 3 × 5

                5 = 1 × 5


To divide a fraction by a number, multiply the fraction with the reciprocal of the number.

For example:

3. Divide 3/5 by 12

Solution:

3/5 ÷ 12

= 3/5 ÷ 12/1

= 3/5 × 1/12

= (3 × 1)/(5 × 12)

= 3/60

= 1/20


Step I: Find the reciprocal of the whole number and multiply with the fractional number as usual.

Step II: Express the product in its lowest terms.


4. Solve: 5/7 ÷ 10

= 5/7 ÷ 10/1

= 5/7 × 1/10

= (5 × 1)/(7 × 10)

= 5/70

Step I: Find the reciprocal of the whole number and multiply with the fractional number as usual.

Step II: Express the product in its lowest terms.


II. Division of a Fractional Number by a Fractional Number:

For example:

1. Divide 7/8 by 1/5

Solution:

7/8 ÷ 1/5

= 7/8 × 5/1

= (7 × 5)/(8 × 1)

= 35/8

= 4 3/8


Step I: Find reciprocal of 1/5.

Step II: Multiply 7/8 by it.

Step III: Express the product in its simplest form.


2. Divide: 5/9 ÷ 10/18

Solution:

5/9 ÷ 10/18

= 5/9 × 18/10

= (5 × 18)/(9 × 10)

= 90/90

= 1


Step I: Find reciprocal of 1/5.

Step II: Multiply 7/8 by it.

Step III: Express the product in its simplest form.

Division of a Fraction by a Fraction:

3. Divide \(\frac{3}{4}\) ÷ \(\frac{5}{3}\)

Step I: Multiply the first fraction with the reciprocal of the second fraction.

Reciprocal of \(\frac{5}{3}\) = \(\frac{3}{5}\)

Therefore, \(\frac{3}{4}\) ÷ \(\frac{5}{3}\)  = \(\frac{3}{4}\) × \(\frac{3}{5}\)

                           = \(\frac{3 × 3}{4 × 5}\)

                           = \(\frac{9}{20}\)

Step II: Reduce the fraction to the lowest terms. (if necessary)

4. Divide \(\frac{16}{27}\) ÷ \(\frac{4}{9}\)

Therefore, \(\frac{16}{27}\) ÷ \(\frac{4}{9}\) = \(\frac{16}{27}\) × \(\frac{9}{4}\); [Reciprocal of \(\frac{4}{9}\) = \(\frac{9}{4}\)]

                            = \(\frac{\not 2 × \not 2 × 2 × 2 × \not 3 × \not 3}{\not 3 × \not 3 × 3 × \not 2 × \not 2}\)

                            = \(\frac{4}{3}\)

                            = 1\(\frac{1}{3}\)

Prime Factors of 16, 27, 9 and 4

            16 = 2 × 2 × 2 × 2

            9 = 3 × 3

            27 = 3 × 3 × 3

            4 = 2 × 2


III. Division of a Mixed Number by another Mixed Number:

For example:

1. Divide 2 ¾ by 1 2/3

Solution:

2 ¾ ÷ 1 2/3

= 11/4 ÷ 5/3

= 11/4 × 3/5

= (11 × 3)/(4 × 5)

= 33/20

= 1 13/20


Express the mixed numbers as improper fractions and multiply as usual.


2. Divide: 2  4/17 ÷ 1  4/17

Solution:

2  4/17 ÷ 1  4/17

= 38/17 ÷ 21/17

= 38/17 × 17/21

= (38 × 17)/(17 × 21)

= 646/357

= 38/21

= 1 17/21


Express the mixed numbers as improper fractions and multiply as usual.


Questions and Answers on Dividing Fractions:

I. Divide the following.

(i) \(\frac{2}{6}\) ÷ \(\frac{1}{3}\)

(ii) \(\frac{5}{8}\) ÷ \(\frac{15}{16}\)

(iii) \(\frac{5}{6}\) ÷ 15

(iv) \(\frac{7}{8}\) ÷ 14

(v) \(\frac{2}{3}\) ÷ 6

(vi) 28 ÷ \(\frac{7}{4}\)

(vii) 2\(\frac{5}{6}\) ÷ 34

(viii) 9\(\frac{1}{2}\) ÷ \(\frac{38}{2}\)

(ix) 3\(\frac{1}{4}\) ÷ \(\frac{26}{28}\)

(x) 7\(\frac{1}{3}\) ÷ 1\(\frac{5}{6}\)

(xi) 2\(\frac{3}{5}\) ÷ 1\(\frac{11}{15}\)

(xii) 1\(\frac{1}{2}\) ÷ \(\frac{4}{7}\)

Related Concept

Fraction of a Whole Numbers

Representation of a Fraction

Equivalent Fractions

Properties of Equivalent Fractions

Like and Unlike Fractions

Comparison of Like Fractions

Comparison of Fractions having the same Numerator

Types of Fractions

Changing Fractions

Conversion of Fractions into Fractions having Same Denominator

Conversion of a Fraction into its Smallest and Simplest Form

Addition of Fractions having the Same Denominator

Subtraction of Fractions having the Same Denominator

Addition and Subtraction of Fractions on the Fraction Number Line




4th Grade Math Activities

From Dividing Fractions to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. 2nd Grade Place Value | Definition | Explanation | Examples |Worksheet

    Sep 14, 24 04:31 PM

    2nd Grade Place Value
    The value of a digit in a given number depends on its place or position in the number. This value is called its place value.

    Read More

  2. Three Digit Numbers | What is Spike Abacus? | Abacus for Kids|3 Digits

    Sep 14, 24 03:39 PM

    2 digit numbers table
    Three digit numbers are from 100 to 999. We know that there are nine one-digit numbers, i.e., 1, 2, 3, 4, 5, 6, 7, 8 and 9. There are 90 two digit numbers i.e., from 10 to 99. One digit numbers are ma

    Read More

  3. Worksheet on Three-digit Numbers | Write the Missing Numbers | Pattern

    Sep 14, 24 02:12 PM

    Reading 3-digit Numbers
    Practice the questions given in worksheet on three-digit numbers. The questions are based on writing the missing number in the correct order, patterns, 3-digit number in words, number names in figures…

    Read More

  4. Comparison of Three-digit Numbers | Arrange 3-digit Numbers |Questions

    Sep 13, 24 02:48 AM

    What are the rules for the comparison of three-digit numbers? (i) The numbers having less than three digits are always smaller than the numbers having three digits as:

    Read More

  5. Comparison of Two-digit Numbers | Arrange 2-digit Numbers | Examples

    Sep 12, 24 03:07 PM

     Compare 39 and 36
    What are the rules for the comparison of two-digit numbers? We know that a two-digit number is always greater than a single digit number. But, when both the numbers are two-digit numbers

    Read More