Addition of Unlike Fractions

We will learn how to solve addition of unlike fractions.

In order to add unlike fractions, first we convert them as like fractions with same denominator in each fraction with the help of method explained earlier and then we add the fractions.

Let us consider some of the examples of adding unlike fractions:

1. Add \(\frac{1}{2}\), \(\frac{2}{3}\) and \(\frac{4}{7}\).

Solution:

Let us find the LCM of the denominators 2, 3 and 7. 

The LCM of 2, 3 and 7 is 42.

\(\frac{1}{2}\) = \(\frac{1 × 21}{2 × 21}\) = \(\frac{21}{42}\)

\(\frac{2}{3}\) = \(\frac{2 × 14}{3 × 14}\) = \(\frac{28}{42}\)

\(\frac{4}{7}\) = \(\frac{4 × 6}{7 × 6}\) = \(\frac{24}{42}\)

Therefore, we get the like fractions \(\frac{1}{2}\), \(\frac{2}{3}\) and \(\frac{4}{7}\).

Now, \(\frac{21}{42}\) + \(\frac{28}{42}\) + \(\frac{24}{42}\)

       = \(\frac{21 + 28 + 24}{42}\)

       = \(\frac{73}{42}\)


2. Add \(\frac{7}{8}\) and \(\frac{9}{10}\)

Solution:

The L.C.M. of the denominators 8 and 10 is 40.

 \(\frac{7}{8}\) = \(\frac{7 × 5}{8 × 5}\) =  \(\frac{35}{40}\), (because 40 ÷ 8 = 5)

 \(\frac{7}{8}\) = \(\frac{9 × 4}{10 × 4}\) = \(\frac{36}{40}\), (because 40 ÷ 10 = 4)

Thus, \(\frac{7}{8}\) + \(\frac{9}{10}\)

      = \(\frac{35}{40}\) + \(\frac{36}{40}\)

      = \(\frac{35 + 36}{40}\)

      = \(\frac{71}{40}\)

      = 1\(\frac{31}{40}\)



3. Add \(\frac{1}{6}\) and \(\frac{5}{12}\)

Solution:

Let L.C.M. of the denominators 6 and 12 is 12.

\(\frac{1}{6}\) = \(\frac{1 × 2}{6 × 2}\) = \(\frac{2}{12}\), (because 12 ÷ 6 = 2)

\(\frac{5}{12}\) = \(\frac{5 × 1}{12 × 1}\) = \(\frac{5}{12}\), (because 12 ÷ 12 = 1)

Thus, \(\frac{1}{6}\) + \(\frac{5}{12}\)

      = \(\frac{2}{12}\) + \(\frac{5}{12}\)

      = \(\frac{2 + 5}{12}\)

      = \(\frac{7}{12}\)




4. 
Add \(\frac{2}{3}\), \(\frac{1}{15}\) and \(\frac{5}{6}\)

Solution:

The L.C.M. of the denominators 3, 15 and 6 is 30.


\(\frac{2}{3}\) = \(\frac{2 × 10}{3 × 10}\) = \(\frac{20}{30}\), (because 30 ÷ 3 = 10)

\(\frac{1}{15}\) = \(\frac{1 × 2}{15 × 2}\) = \(\frac{2}{30}\), (because 30 ÷ 15 = 2)

\(\frac{5}{6}\)  = \(\frac{5 × 5}{6 × 5}\) = \(\frac{25}{30}\), (because 30 ÷ 6 = 5)

Thus, \(\frac{2}{3}\) + \(\frac{1}{15}\) + \(\frac{5}{6}\)


      = \(\frac{20}{30}\) + \(\frac{2}{30}\) + \(\frac{25}{30}\)

      = \(\frac{20 + 2 + 25}{30}\)

      = \(\frac{47}{30}\)

      = 1\(\frac{17}{30}\)




More examples on Addition of Unlike Fractions (Fractions having Different Denominators)

5. Add \(\frac{1}{6}\) + \(\frac{3}{4}\)

Solution:

First Method:

Step I: Find the L.C.M. of the denominators 6 and 4.

L.C.M. of 6 and 4 = 2 × 3 × 2 =12

LCM of 6 and 4

Step II:Write the equivalent fractions of \(\frac{1}{6}\) and \(\frac{3}{4}\) with denominator 12.


\(\frac{1 × 2}{6 × 2}\) =  \(\frac{2}{12}\)

\(\frac{3 × 3}{4 × 3}\) =  \(\frac{9}{12}\)

Step III:Add the equivalent fractions

\(\frac{1}{6}\) + \(\frac{3}{4}\)

=  \(\frac{2}{12}\) + \(\frac{9}{12}\)

= \(\frac{2 + 9}{12}\)

= \(\frac{11}{12}\)

Add \(\frac{1}{6}\) + \(\frac{3}{4}\)



Second Method:

\(\frac{1}{6}\) + \(\frac{3}{4}\)


L.C.M. of 6 and 4 is 12

=  \(\frac{(12 ÷ 6) × 1 + (12 ÷ 4) × 3}{12}\)

= \(\frac{(2 × 1) + (3 × 3}{12}\)

= \(\frac{2 + 9}{12}\)

= \(\frac{11}{12}\)

Steps:

Divide 12 by I denominator. Multiply the quotient with I numerator.

Divide 12 by II denominator. Multiply the quotient with II numerator.

6. Add \(\frac{3}{8}\) + \(\frac{2}{4}\) + \(\frac{6}{16}\)

Solution:

L.C.M. of 8, 4, 16 = 2 × 2 × 2 × 2 = 16

\(\frac{3}{8}\) + \(\frac{2}{4}\) + \(\frac{6}{16}\)

= \(\frac{(16 ÷ 8) × 3 + (16 ÷ 4) × 2 + (16 ÷ 16) × 6}{16}\)

= \(\frac{(2 × 3) + (4 × 2) + (1 × 6)}{16}\)

= \(\frac{6 + 8 + 6}{16}\)

= \(\frac{20}{16}\)

= \(\frac{5}{4}\)

= 1\(\frac{1}{4}\)

L.C.M. of 8, 4 and 16

Addition of Mixed Numbers

7. Add 2\(\frac{2}{6}\) + 5\(\frac{1}{3}\) + 1\(\frac{4}{5}\)

Solution:

First Method:

Separate the whole numbers and proper fractions.

2\(\frac{2}{6}\) + 5\(\frac{1}{3}\) + 1\(\frac{4}{5}\) = (2 + 5 + 1) + \(\frac{2}{6}\) + \(\frac{1}{3}\) + \(\frac{4}{5}\)

= 8 + \(\frac{2}{6}\) + \(\frac{1}{3}\) + \(\frac{4}{5}\)

L.C.M. of 6, 3 and 5 is 30.

= 8 + \(\frac{(30 ÷ 6) × 2 + (30 ÷ 3) × 1 + (30 ÷ 5) × 4}{30}\)

= 8 + \(\frac{(5 × 2) + (10 × 1) + (6 × 4)}{30}\)

= 8 + \(\frac{10 + 10 + 24}{30}\)

= 8 + \(\frac{44}{30}\)

= 8 + \(\frac{22}{15}\)

= 8 + 1\(\frac{7}{15}\)


Second Method:

Add 2\(\frac{2}{6}\) + 5\(\frac{1}{3}\) + 1\(\frac{4}{5}\)

Convert the mixed number into improper fractions and find the sum

2\(\frac{2}{6}\) = \(\frac{(2 × 6) + 2}{6}\) = \(\frac{14}{6}\)

5\(\frac{1}{3}\) = \(\frac{(5 × 3) + 1}{3}\) = \(\frac{16}{3}\)

1\(\frac{4}{5}\) = \(\frac{(1 × 5) + 4}{5}\) = \(\frac{9}{5}\)

Therefore, 2\(\frac{2}{6}\) + 5\(\frac{1}{3}\) + 1\(\frac{4}{5}\) = \(\frac{14}{6}\) + \(\frac{16}{3}\) + \(\frac{9}{5}\)

                          = \(\frac{14 × 5}{6 × 5}\) + \(\frac{16 × 10}{3 × 10}\) + \(\frac{9 × 6}{5 × 6}\)

                          = \(\frac{70}{30}\) + \(\frac{160}{30}\) + \(\frac{54}{30}\)

                          = \(\frac{70 + 160 + 54}{30}\)

                          = \(\frac{284}{30}\)

                          = \(\frac{142}{15}\)

                          = 9\(\frac{7}{15}\)


8. Add \(\frac{2}{6}\), 4 and \(\frac{7}{12}\)

Solution:

4 = \(\frac{4}{1}\)

\(\frac{2}{6}\) + 4 + \(\frac{7}{12}\)

= \(\frac{2}{6}\) + \(\frac{4}{1}\) + \(\frac{7}{12}\)

           L.C.M. of 6, 1, 12 is 12


= \(\frac{(12 ÷ 6) × 2 + (12 ÷ 1) × 4 + (12 ÷ 12) × 7}{12}\)

= \(\frac{(2 × 2) + (12 × 4) + (1 × 7)}{12}\)

= \(\frac{4 + 48 + 7}{12}\)

= \(\frac{59}{12}\)

= 4\(\frac{11}{12}\)

L.C.M. of 6, 1 and 12
Addition of Unlike Fractions

To add unlike fractions, we first convert them into like fractions. In order to make a common denominator we find the LCM of all different denominators of the given fractions and then make them equivalent fractions with a common denominator.


Word Problems on Addition of Unlike Fractions:

1. On Monday Michael read \(\frac{5}{16}\) of the book. On Wednesday he reads \(\frac{4}{8}\) of the book. What fraction of the book has Michael read?

Solution:

On Monday Michael read \(\frac{5}{16}\) of the book.

On Wednesday he reads \(\frac{4}{8}\) of the book.

Now add the two fractions

\(\frac{5}{16}\) + \(\frac{4}{8}\)

Let us find the LCM of the denominators 16 and 8. 

The LCM of 16 and 8 is 16.

\(\frac{5}{16}\) = \(\frac{5 × 1}{16 × 1}\) = \(\frac{5}{16}\)

\(\frac{4}{8}\) = \(\frac{4 × 2}{8 × 2}\) = \(\frac{8}{16}\)

Therefore, we get the like fractions \(\frac{5}{16}\) and \(\frac{8}{16}\).

Now, \(\frac{5}{16}\) + \(\frac{8}{16}\)

       = \(\frac{5 + 8}{16}\)

       = \(\frac{13}{16}\)

Therefore, Michael read in two days \(\frac{13}{16}\) of the book.


2. Sarah ate \(\frac{1}{3}\) part of the pizza and her sister ate \(\frac{1}{2}\) of the pizza. What fraction of the pizza was eaten by both sisters?

Solution:

Sarah ate \(\frac{1}{3}\) part of the pizza.

Her sister ate \(\frac{1}{2}\) of the pizza.

Now add the two fractions

\(\frac{1}{3}\) + \(\frac{1}{2}\)

Let us find the LCM of the denominators 3 and 2. 

The LCM of 3 and 2 is 6.

\(\frac{1}{3}\) = \(\frac{1 × 2}{3 × 2}\) = \(\frac{2}{6}\)

\(\frac{1}{2}\) = \(\frac{1 × 3}{2 × 3}\) = \(\frac{3}{6}\)

Therefore, we get the like fractions \(\frac{2}{6}\) and \(\frac{3}{6}\).

Now, \(\frac{2}{6}\) + \(\frac{3}{6}\)

       = \(\frac{2 + 3}{6}\)

       = \(\frac{5}{6}\)

Therefore, \(\frac{5}{6}\) of the pizza was eaten by both sisters.


3. Catherine is preparing for her final exam. She study \(\frac{9}{22}\) hours on Wednesday and \(\frac{5}{11}\) hours on Sunday. How many hours she studied in two days?

Solution:

Catherine study \(\frac{9}{22}\) hours on Wednesday.

Again, she study \(\frac{5}{11}\) hours on Sunday.

Now add the two fractions

\(\frac{9}{22}\) + \(\frac{5}{11}\)

Let us find the LCM of the denominators 22 and 11. 

The LCM of 22 and 11 is 22.

\(\frac{9}{22}\) = \(\frac{9 × 1}{22 × 1}\) = \(\frac{9}{22}\)

\(\frac{5}{11}\) = \(\frac{5 × 2}{11 × 2}\) = \(\frac{10}{22}\)

Therefore, we get the like fractions \(\frac{9}{22}\) and \(\frac{10}{22}\).

Now, \(\frac{9}{22}\) + \(\frac{10}{22}\)

       = \(\frac{9 + 10}{22}\)

       = \(\frac{19}{22}\)

Therefore, Catherine studied a total \(\frac{9}{22}\) hours in two days.


Questions and Answers Addition of Unlike Fractions:

1. Add the following Unlike Fractions:

(i) \(\frac{3}{4}\) + \(\frac{5}{6}\)

(ii) \(\frac{1}{7}\) + \(\frac{2}{3}\) + \(\frac{6}{7}\)

(iii) \(\frac{7}{8}\) + \(\frac{5}{6}\) + \(\frac{4}{10}\)

(iv) \(\frac{3}{7}\) + \(\frac{2}{5}\) + \(\frac{6}{11}\)

(v) 3\(\frac{5}{8}\) + 4\(\frac{1}{6}\) + 4\(\frac{7}{12}\)


Answer:

1. (i) 1\(\frac{7}{12}\)

(ii) 1\(\frac{2}{3}\) 

(iii) 2\(\frac{13}{120}\)

(iv) 1\(\frac{144}{385}\) 

(v) 12\(\frac{3}{8}\)

Related Concept





4th Grade Math Activities

From Addition of Unlike Fractions to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 5th Grade Prime and Composite Numbers | Definitions | Examples | Math

    Mar 21, 25 12:18 AM

    5th grade prime and composite numbers

    Read More

  2. 14 Times Table | Read and Write Multiplication Table of 14| Video

    Mar 20, 25 04:03 PM

    14 Times Table
    In 14 times table we will learn how to read and write multiplication table of 14. We read fourteen times table as:One time fourteen is 14 Two times fourteen are 28 Three times fourteen are 42

    Read More

  3. 5th Grade Test of Divisibility Rules | Divisibility Rules From 2 to 12

    Mar 20, 25 04:00 PM

    In 5th grade test of divisibility rules we will learn about the exact divisibility of a number by the numbers from 2 to 12. The digit in the ones place should be 2, 4, 6, 8 or 0.

    Read More

  4. 5th Grade Even and Odd Numbers | Definitions | Examples

    Mar 20, 25 02:45 AM

    Numbers which are exactly divisible by 2 are even numbers. For example. 2,4,6,8,20,48,88, etc. are even numbers. They are multiples of 2. Numbers which are not exactly divisible by 2 are odd numbers…

    Read More

  5. 5th Grade Factors and Multiples | Definitions | Solved Examples | Math

    Mar 20, 25 01:02 AM

    Prime Factor of 312
    Here we will discuss how factors and multiples are related to each other in math. A factor of a number is a divisor which divides the dividend exactly. A factor of a number which is a prime number is…

    Read More