Addition of Unlike Fractions

We will learn how to solve addition of unlike fractions.

In order to add unlike fractions, first we convert them as like fractions with same denominator in each fraction with the help of method explained earlier and then we add the fractions.

Let us consider some of the examples of adding unlike fractions:

1. Add \(\frac{1}{2}\), \(\frac{2}{3}\) and \(\frac{4}{7}\).

Solution:

Let us find the LCM of the denominators 2, 3 and 7. 

The LCM of 2, 3 and 7 is 42.

\(\frac{1}{2}\) = \(\frac{1 × 21}{2 × 21}\) = \(\frac{21}{42}\)

\(\frac{2}{3}\) = \(\frac{2 × 14}{3 × 14}\) = \(\frac{28}{42}\)

\(\frac{4}{7}\) = \(\frac{4 × 6}{7 × 6}\) = \(\frac{24}{42}\)

Therefore, we get the like fractions \(\frac{1}{2}\), \(\frac{2}{3}\) and \(\frac{4}{7}\).

Now, \(\frac{21}{42}\) + \(\frac{28}{42}\) + \(\frac{24}{42}\)

       = \(\frac{21 + 28 + 24}{42}\)

       = \(\frac{73}{42}\)


2. Add \(\frac{7}{8}\) and \(\frac{9}{10}\)

Solution:

The L.C.M. of the denominators 8 and 10 is 40.

 \(\frac{7}{8}\) = \(\frac{7 × 5}{8 × 5}\) =  \(\frac{35}{40}\), (because 40 ÷ 8 = 5)

 \(\frac{7}{8}\) = \(\frac{9 × 4}{10 × 4}\) = \(\frac{36}{40}\), (because 40 ÷ 10 = 4)

Thus, \(\frac{7}{8}\) + \(\frac{9}{10}\)

      = \(\frac{35}{40}\) + \(\frac{36}{40}\)

      = \(\frac{35 + 36}{40}\)

      = \(\frac{71}{40}\)

      = 1\(\frac{31}{40}\)



3. Add \(\frac{1}{6}\) and \(\frac{5}{12}\)

Solution:

Let L.C.M. of the denominators 6 and 12 is 12.

\(\frac{1}{6}\) = \(\frac{1 × 2}{6 × 2}\) = \(\frac{2}{12}\), (because 12 ÷ 6 = 2)

\(\frac{5}{12}\) = \(\frac{5 × 1}{12 × 1}\) = \(\frac{5}{12}\), (because 12 ÷ 12 = 1)

Thus, \(\frac{1}{6}\) + \(\frac{5}{12}\)

      = \(\frac{2}{12}\) + \(\frac{5}{12}\)

      = \(\frac{2 + 5}{12}\)

      = \(\frac{7}{12}\)




4. 
Add \(\frac{2}{3}\), \(\frac{1}{15}\) and \(\frac{5}{6}\)

Solution:

The L.C.M. of the denominators 3, 15 and 6 is 30.


\(\frac{2}{3}\) = \(\frac{2 × 10}{3 × 10}\) = \(\frac{20}{30}\), (because 30 ÷ 3 = 10)

\(\frac{1}{15}\) = \(\frac{1 × 2}{15 × 2}\) = \(\frac{2}{30}\), (because 30 ÷ 15 = 2)

\(\frac{5}{6}\)  = \(\frac{5 × 5}{6 × 5}\) = \(\frac{25}{30}\), (because 30 ÷ 6 = 5)

Thus, \(\frac{2}{3}\) + \(\frac{1}{15}\) + \(\frac{5}{6}\)


      = \(\frac{20}{30}\) + \(\frac{2}{30}\) + \(\frac{25}{30}\)

      = \(\frac{20 + 2 + 25}{30}\)

      = \(\frac{47}{30}\)

      = 1\(\frac{17}{30}\)




More examples on Addition of Unlike Fractions (Fractions having Different Denominators)

5. Add \(\frac{1}{6}\) + \(\frac{3}{4}\)

Solution:

First Method:

Step I: Find the L.C.M. of the denominators 6 and 4.

L.C.M. of 6 and 4 = 2 × 3 × 2 =12

LCM of 6 and 4

Step II:Write the equivalent fractions of \(\frac{1}{6}\) and \(\frac{3}{4}\) with denominator 12.


\(\frac{1 × 2}{6 × 2}\) =  \(\frac{2}{12}\)

\(\frac{3 × 3}{4 × 3}\) =  \(\frac{9}{12}\)

Step III:Add the equivalent fractions

\(\frac{1}{6}\) + \(\frac{3}{4}\)

=  \(\frac{2}{12}\) + \(\frac{9}{12}\)

= \(\frac{2 + 9}{12}\)

= \(\frac{11}{12}\)

Add \(\frac{1}{6}\) + \(\frac{3}{4}\)



Second Method:

\(\frac{1}{6}\) + \(\frac{3}{4}\)


L.C.M. of 6 and 4 is 12

=  \(\frac{(12 ÷ 6) × 1 + (12 ÷ 4) × 3}{12}\)

= \(\frac{(2 × 1) + (3 × 3}{12}\)

= \(\frac{2 + 9}{12}\)

= \(\frac{11}{12}\)

Steps:

Divide 12 by I denominator. Multiply the quotient with I numerator.

Divide 12 by II denominator. Multiply the quotient with II numerator.

6. Add \(\frac{3}{8}\) + \(\frac{2}{4}\) + \(\frac{6}{16}\)

Solution:

L.C.M. of 8, 4, 16 = 2 × 2 × 2 × 2 = 16

\(\frac{3}{8}\) + \(\frac{2}{4}\) + \(\frac{6}{16}\)

= \(\frac{(16 ÷ 8) × 3 + (16 ÷ 4) × 2 + (16 ÷ 16) × 6}{16}\)

= \(\frac{(2 × 3) + (4 × 2) + (1 × 6)}{16}\)

= \(\frac{6 + 8 + 6}{16}\)

= \(\frac{20}{16}\)

= \(\frac{5}{4}\)

= 1\(\frac{1}{4}\)

L.C.M. of 8, 4 and 16

Addition of Mixed Numbers

7. Add 2\(\frac{2}{6}\) + 5\(\frac{1}{3}\) + 1\(\frac{4}{5}\)

Solution:

First Method:

Separate the whole numbers and proper fractions.

2\(\frac{2}{6}\) + 5\(\frac{1}{3}\) + 1\(\frac{4}{5}\) = (2 + 5 + 1) + \(\frac{2}{6}\) + \(\frac{1}{3}\) + \(\frac{4}{5}\)

= 8 + \(\frac{2}{6}\) + \(\frac{1}{3}\) + \(\frac{4}{5}\)

L.C.M. of 6, 3 and 5 is 30.

= 8 + \(\frac{(30 ÷ 6) × 2 + (30 ÷ 3) × 1 + (30 ÷ 5) × 4}{30}\)

= 8 + \(\frac{(5 × 2) + (10 × 1) + (6 × 4)}{30}\)

= 8 + \(\frac{10 + 10 + 24}{30}\)

= 8 + \(\frac{44}{30}\)

= 8 + \(\frac{22}{15}\)

= 8 + 1\(\frac{7}{15}\)


Second Method:

Add 2\(\frac{2}{6}\) + 5\(\frac{1}{3}\) + 1\(\frac{4}{5}\)

Convert the mixed number into improper fractions and find the sum

2\(\frac{2}{6}\) = \(\frac{(2 × 6) + 2}{6}\) = \(\frac{14}{6}\)

5\(\frac{1}{3}\) = \(\frac{(5 × 3) + 1}{3}\) = \(\frac{16}{3}\)

1\(\frac{4}{5}\) = \(\frac{(1 × 5) + 4}{5}\) = \(\frac{9}{5}\)

Therefore, 2\(\frac{2}{6}\) + 5\(\frac{1}{3}\) + 1\(\frac{4}{5}\) = \(\frac{14}{6}\) + \(\frac{16}{3}\) + \(\frac{9}{5}\)

                          = \(\frac{14 × 5}{6 × 5}\) + \(\frac{16 × 10}{3 × 10}\) + \(\frac{9 × 6}{5 × 6}\)

                          = \(\frac{70}{30}\) + \(\frac{160}{30}\) + \(\frac{54}{30}\)

                          = \(\frac{70 + 160 + 54}{30}\)

                          = \(\frac{284}{30}\)

                          = \(\frac{142}{15}\)

                          = 9\(\frac{7}{15}\)


8. Add \(\frac{2}{6}\), 4 and \(\frac{7}{12}\)

Solution:

4 = \(\frac{4}{1}\)

\(\frac{2}{6}\) + 4 + \(\frac{7}{12}\)

= \(\frac{2}{6}\) + \(\frac{4}{1}\) + \(\frac{7}{12}\)

           L.C.M. of 6, 1, 12 is 12


= \(\frac{(12 ÷ 6) × 2 + (12 ÷ 1) × 4 + (12 ÷ 12) × 7}{12}\)

= \(\frac{(2 × 2) + (12 × 4) + (1 × 7)}{12}\)

= \(\frac{4 + 48 + 7}{12}\)

= \(\frac{59}{12}\)

= 4\(\frac{11}{12}\)

L.C.M. of 6, 1 and 12
Addition of Unlike Fractions

To add unlike fractions, we first convert them into like fractions. In order to make a common denominator we find the LCM of all different denominators of the given fractions and then make them equivalent fractions with a common denominator.


Word Problems on Addition of Unlike Fractions:

1. On Monday Michael read \(\frac{5}{16}\) of the book. On Wednesday he reads \(\frac{4}{8}\) of the book. What fraction of the book has Michael read?

Solution:

On Monday Michael read \(\frac{5}{16}\) of the book.

On Wednesday he reads \(\frac{4}{8}\) of the book.

Now add the two fractions

\(\frac{5}{16}\) + \(\frac{4}{8}\)

Let us find the LCM of the denominators 16 and 8. 

The LCM of 16 and 8 is 16.

\(\frac{5}{16}\) = \(\frac{5 × 1}{16 × 1}\) = \(\frac{5}{16}\)

\(\frac{4}{8}\) = \(\frac{4 × 2}{8 × 2}\) = \(\frac{8}{16}\)

Therefore, we get the like fractions \(\frac{5}{16}\) and \(\frac{8}{16}\).

Now, \(\frac{5}{16}\) + \(\frac{8}{16}\)

       = \(\frac{5 + 8}{16}\)

       = \(\frac{13}{16}\)

Therefore, Michael read in two days \(\frac{13}{16}\) of the book.


2. Sarah ate \(\frac{1}{3}\) part of the pizza and her sister ate \(\frac{1}{2}\) of the pizza. What fraction of the pizza was eaten by both sisters?

Solution:

Sarah ate \(\frac{1}{3}\) part of the pizza.

Her sister ate \(\frac{1}{2}\) of the pizza.

Now add the two fractions

\(\frac{1}{3}\) + \(\frac{1}{2}\)

Let us find the LCM of the denominators 3 and 2. 

The LCM of 3 and 2 is 6.

\(\frac{1}{3}\) = \(\frac{1 × 2}{3 × 2}\) = \(\frac{2}{6}\)

\(\frac{1}{2}\) = \(\frac{1 × 3}{2 × 3}\) = \(\frac{3}{6}\)

Therefore, we get the like fractions \(\frac{2}{6}\) and \(\frac{3}{6}\).

Now, \(\frac{2}{6}\) + \(\frac{3}{6}\)

       = \(\frac{2 + 3}{6}\)

       = \(\frac{5}{6}\)

Therefore, \(\frac{5}{6}\) of the pizza was eaten by both sisters.


3. Catherine is preparing for her final exam. She study \(\frac{9}{22}\) hours on Wednesday and \(\frac{5}{11}\) hours on Sunday. How many hours she studied in two days?

Solution:

Catherine study \(\frac{9}{22}\) hours on Wednesday.

Again, she study \(\frac{5}{11}\) hours on Sunday.

Now add the two fractions

\(\frac{9}{22}\) + \(\frac{5}{11}\)

Let us find the LCM of the denominators 22 and 11. 

The LCM of 22 and 11 is 22.

\(\frac{9}{22}\) = \(\frac{9 × 1}{22 × 1}\) = \(\frac{9}{22}\)

\(\frac{5}{11}\) = \(\frac{5 × 2}{11 × 2}\) = \(\frac{10}{22}\)

Therefore, we get the like fractions \(\frac{9}{22}\) and \(\frac{10}{22}\).

Now, \(\frac{9}{22}\) + \(\frac{10}{22}\)

       = \(\frac{9 + 10}{22}\)

       = \(\frac{19}{22}\)

Therefore, Catherine studied a total \(\frac{9}{22}\) hours in two days.


Questions and Answers Addition of Unlike Fractions:

1. Add the following Unlike Fractions:

(i) \(\frac{3}{4}\) + \(\frac{5}{6}\)

(ii) \(\frac{1}{7}\) + \(\frac{2}{3}\) + \(\frac{6}{7}\)

(iii) \(\frac{7}{8}\) + \(\frac{5}{6}\) + \(\frac{4}{10}\)

(iv) \(\frac{3}{7}\) + \(\frac{2}{5}\) + \(\frac{6}{11}\)

(v) 3\(\frac{5}{8}\) + 4\(\frac{1}{6}\) + 4\(\frac{7}{12}\)


Answer:

1. (i) 1\(\frac{7}{12}\)

(ii) 1\(\frac{2}{3}\) 

(iii) 2\(\frac{13}{120}\)

(iv) 1\(\frac{144}{385}\) 

(v) 12\(\frac{3}{8}\)

Related Concept





4th Grade Math Activities

From Addition of Unlike Fractions to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Comparison of Numbers | Compare Numbers Rules | Examples of Comparison

    May 18, 24 02:59 PM

    Rules for Comparison of Numbers
    Rule I: We know that a number with more digits is always greater than the number with less number of digits. Rule II: When the two numbers have the same number of digits, we start comparing the digits…

    Read More

  2. Numbers | Notation | Numeration | Numeral | Estimation | Examples

    May 12, 24 06:28 PM

    Numbers are used for calculating and counting. These counting numbers 1, 2, 3, 4, 5, .......... are called natural numbers. In order to describe the number of elements in a collection with no objects

    Read More

  3. Face Value and Place Value|Difference Between Place Value & Face Value

    May 12, 24 06:23 PM

    Face Value and Place Value
    What is the difference between face value and place value of digits? Before we proceed to face value and place value let us recall the expanded form of a number. The face value of a digit is the digit…

    Read More

  4. Patterns in Numbers | Patterns in Maths |Math Patterns|Series Patterns

    May 12, 24 06:09 PM

    Complete the Series Patterns
    We see so many patterns around us in our daily life. We know that a pattern is an arrangement of objects, colors, or numbers placed in a certain order. Some patterns neither grow nor reduce but only r…

    Read More

  5. Worksheet on Bar Graphs | Bar Graphs or Column Graphs | Graphing Bar

    May 12, 24 04:59 PM

    Bar Graph Worksheet
    In math worksheet on bar graphs students can practice the questions on how to make and read bar graphs or column graphs. Test your knowledge by practicing this graphing worksheet where we will

    Read More