Subscribe to our YouTube channel for the latest videos, updates, and tips.


Division by 10 and 100 and 1000

Division by 10 and 100 and 1000 are explained here step by step. We know the following facts regarding division process:

1. (i) When any number is divided by 1, the quotient is the number itself.

(a) 7 ÷ 1 = 7

(b) 53 ÷ 1 = 53

(c) 275 ÷ 1 = 275


(ii) When a number (except 0) is divided by itself, the quotient is 1.

(a) 7 ÷7 = 1

(b) 53 ÷ 53 = 1

(c) 275 ÷ 275 = 1

(iii) When zero (0) is divided by any number, the quotient is zero (0), but no number can be divided by zero (0). 


(a) 0 ÷ 8 = 0, 0/8 = 0, 0 ÷ 115 = 0, 0/115 = 0

(b) 0 ÷ 0 has no meaning, 10 ÷ 0 has no meaning, 15 ÷ 0 has no meaning.


2. Division by 10:

(i) 20 ÷ 10 = 2

(ii) 40 ÷10 = 4

(iii) 120 ÷ 10 = 12

(iv) 176 ÷ 10 = 17, remainder 6


When a number is divided by 10, the digits, except the digit at the one's place, make the quotient and the digit at one's place becomes the remainder.

As for example:

(i) 48 ÷ 10

Divided by 10







Quotient = 4 Remainder = 8


(ii) 76 ÷ 10

Divided by 10, 100 and 1000






Quotient = 7 Remainder = 6



(iii) 492 ÷ 10

Divided by 10 and 100







Quotient = 49 Remainder = 2


(iv) 178 ÷ 10

Number is Divided by 10









Quotient = 17 Remainder = 8



(v) 569 ÷ 10

Divided by 10









Quotient = 56 Remainder = 9



(vi) 4183 ÷ 10

Number is divided by 10













Quotient = 418 Remainder = 3


(vii) Divide 84 by 10.

Solution:

Divide 84 by 10

(vii) Divide 868 by 10.

Solution:

Divide 868 by 10

Thus, when a number is divided by 10, the remainder is always the digit of the unit place and the quotient is the number made by the remaining digits.

In other words, when we divide a number by 10, the digit at ones place of the given number becomes the remainder and the digits at the remaining places of the number given the quotient.

Therefore, notice that on dividing by 10, the digit in the ONES place forms the remainder, while the remaining digits form the quotient.


3. Division by 100:

(i) 500 ÷ 100 = 5

(ii) 700 ÷100 = 7

(iii) 752 ÷ 100 = 7, remainder 52


When a number is divided by 100, the quotient is the number made by the digits, except the digits at one's and ten's places. The number formed by ten's and one's digit of the dividend number is the remainder. 

As for example: 

(i) 476 ÷ 100

Will give quotient 4 remainder 76 



(ii) 3479 ÷ 100 

Will give quotient 34 remainder 79 

The number of digits in the remainder is equal to the number of zeros in the divisor. 


(iii) 527 ÷ 100

A Number is Divided by 100







Quotient = 5 Remainder = 27


(iv) 609 ÷ 100

Divided by 100







Quotient = 6 Remainder = 9


(v) 7635 ÷ 100

Number is Divided by 100









Quotient = 76 Remainder = 35


(vi) 7635 ÷ 100

A Number is Divided by 100









Quotient = 30 Remainder = 79


(vii) Divide 396 by 100.

Divide 396 by 100


Thus, when the dividend number is divided by 100, the extreme right two digits form the remainder and the rest of the digits form the quotient.

In other words, when we divide a number by 100, the digit at ones and tens place together of the given number forms the remainder and the digits at the remaining places of the number given the quotient.

Therefore, when we divide by 100, the two digits in the ONES and the TENS place form the remainder while the remaining digits form the quotient.


4. Division by 1000:

(i) 6000 ÷ 1000 = 6

(ii) 9000 ÷1000 = 9

(iii) 8542 ÷ 1000 = 8, remainder 542

(iv) 7294 ÷ 1000 = 7, remainder 294


Following this method, when we divide by 1000, the remainder will have 3 digits.


When a number is divided by 1000, the quotient is the number made of the digits except the digits at one's, ten's and hundred's place. The number formed by these three digits is the remainder.

As for example:

(i) 1379 ÷ 1000

Will give quotient 1 remainder 379


(ii)45362 ÷ 1000

Will give quotient 45 remainder 362

The 3 digits in the ONES, TENS, HUNDREDS places form the remainder.


(iii) 3851 ÷ 1000

Number is Divided by 1000







Quotient = 3 Remainder = 851


(iv) 9874 ÷ 1000

Divided by 1000







Quotient = 9 Remainder = 874


(v) 35786 ÷ 1000

A Number is Divided by 1000










Quotient = 35 Remainder = 786


(vi) Divide 4129 by 1000.

Solution:

Divide 4129 by 1000


Thus, when the dividend number is divided by 1000, the extreme right three digits form the remainder and the rest digit/digits form the quotient.

In other words, when we divide a number by 1000, the digit at ones, tens and hundreds place together of the given number forms the remainder and the digits at the remaining places of the number given the quotient.


Note:

The zeros in the divisor help in getting the answer.

                        4532 ÷ 10

Q : 453

R : 2

                        4532 ÷ 100

Q : 45

R : 32

                        4532 ÷ 1000

Q : 4

R : 532

Division by 10 and 100 and 1000 Video

Subscribe to our YouTube channel for the latest videos, updates, and tips.


Division of a number by 20, 30, 40.....


(i) 80 ÷ 20

20 × ____ = 80

2 × 4 = 8

So, 20 × 4 = 80


(ii) 140 ÷ 70

70 × ____ = 140

7 × 2 = 14

So, 70 × 2 = 140


(iii) 900 ÷30

30 × ____ = 900

3 × 3 = 9

30 × 3 = 90

So, 30 × 30 = 900


(iv) 320 ÷ 80

80 × ____ = 320

8 × 4 = 32

So, 80 × 4 = 320


Remember:

I: When we divide a number by 10, the quotient is obtained by removing the first digit from the right, i.e. digit in the ones place. The digit in the units place is the remainder.

II: When we divide a number by 100, the quotient is obtained by removing the first two digits from the right, i.e. digit in the tens and ones places. The number formed by the digits in tens and ones places is the remainder.

III: When we divide a number by 1000, the quotient is obtained by removing the first three digits from the right, i.e. digit in the hundreds, tens and ones places. The number formed by the digits in hundreds, tens and ones places is the remainder.


Worksheet on Division by Division by 10 and 100 and 1000:

Questions and Answers on Division by 10, 100 and 1000:

1. (i) 400 ÷ 10 = Q = ............ R = ............

(ii) 352 ÷ 100 = Q = ............ R = ............

(iii) 384 ÷ 100 = Q = ............ R = ............

(iv) 45 ÷ 10 = Q = ............ R = ............

(v) 295 ÷ 10 = Q = ............ R = ............

(vi) 4072 ÷ 100 = Q = ............ R = ............

(vii) 37 ÷ 10 = Q = ............ R = ............

(viii) 9675 ÷ 1000 = Q = ............ R = ............

(ix) 6814 ÷ 1000 = Q = ............ R = ............

(x) 3596 ÷ 100 = Q = ............ R = ............


Answer:

1. (i) Q = 40; R = 0

(ii) Q = 3; R = 52

(iii) Q = 3; R = 84

(iv) Q = 4; R = 5

(v) Q = 29; R = 5

(vi) Q = 40; R = 72

(vii) Q = 3; R = 7

(viii) Q = 9; R = 675

(ix) Q = 6; R = 814

(x) Q = 35; R = 96


2. Find the quotient and remainder:

(i) 610 ÷ 10

(ii) 75 ÷ 10

(iii) 68 ÷ 10

(iv) 100 ÷ 10

(v) 540 ÷ 10

(vi) 950 ÷ 10

(vii) 615 ÷ 10

(viii) 205 ÷ 10


Answer:

2. (i) Quotient: 61; Remainder: 0

(ii) Quotient: 7; Remainder: 5

(iii) Quotient: 6; Remainder: 8

(iv) Quotient: 10; Remainder: 0

(v) Quotient: 54; Remainder: 0

(vi) Quotient: 95; Remainder: 0

(vii) Quotient: 61; Remainder: 5

(viii) Quotient: 20; Remainder: 5

1. How Do You Divide a 2-Digit Numbers by 10?

Answer:

When we divide a 2-digit numbers by 10, the digit in Ones place is the remainder and digit in Tens place is the quotient.

Let us divide 63 by 10.

                   6         Remainder  

            10 |\(\overline{6 3}\)

                - 60

                    3         Quotient

2. How Do You Divide a 3-Digit Numbers by 10?

Answer:

When we divide a 3-digit numbers by 10, the digit in Ones place is the remainder and the other digits iof the number make quotient.

Let us divide 63 by 10.

                    56         Remainder  

            10 |\(\overline{563}\)

                - 50 

                    63

                  - 60

                      3         Quotient

You might like these

Related Concept

Addition

Word Problems on Addition

Subtraction

Check for Subtraction and Addition

Word Problems Involving Addition and Subtraction

Estimating Sums and Differences

Find the Missing Digits

Multiplication

Multiply a Number by a 2-Digit Number

Multiplication of a Number by a 3-Digit Number

Multiply a Number

Estimating Products

Word Problems on Multiplication

Multiplication and Division

Terms Used in Division

Division of Two-Digit by a One-Digit Numbers

Division of Four-Digit by a One-Digit Numbers

Division by 10 and 100 and 1000

Dividing Numbers

Estimating the Quotient

Division by Two-Digit Numbers

Word Problems on Division





4th Grade Math Activities

From Division by 10 and 100 and 1000 to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. How to Find the Average? | What Does Average Mean? | Definition

    May 15, 25 06:05 PM

    Average 2
    Average means a number which is between the largest and the smallest number. Average can be calculated only for similar quantities and not for dissimilar quantities.

    Read More

  2. Worksheet on Rounding Off Number | Rounding off Number | Nearest 10

    May 15, 25 05:12 PM

    In worksheet on rounding off number we will solve 10 different types of problems. 1. Round off to nearest 10 each of the following numbers: (a) 14 (b) 57 (c) 61 (d) 819 (e) 7729 2. Round off to

    Read More

  3. Worksheet on Rounding Decimals | Questions Related to Round a Decimal

    May 15, 25 11:52 AM

    Worksheet on Rounding Decimals
    The worksheet on rounding decimals would be really good for the students to practice huge number of questions related to round a decimal. This worksheet include questions related

    Read More

  4. Rounding Decimals | How to Round a Decimal? | Rounding off Decimal

    May 14, 25 03:01 PM

    Rounding decimals are frequently used in our daily life mainly for calculating the cost of the items. In mathematics rounding off decimal is a technique used to estimate or to find the approximate

    Read More

  5. Rounding Off to the Nearest Whole Number | Nearest 10, 100, and 1000

    May 13, 25 03:43 PM

    Nearest Ten
    Here we will learn how to rounding off to the nearest whole number?

    Read More