Expanded form of Decimal Fractions

We will discuss here about the expanded form of decimal fractions.

In expanded form of decimal fractions we will learn how to read and write the decimal numbers.

Decimal numbers can be expressed in expanded form using the place-value chart. Let us consider the number 561.129. Let us expand each of the digits using the place-value chart.

Expanded form of Decimal

So, we can write 561.129 in the expanded form as follows.

561.129 = 500 + 60 + 1 + 0.1 + 0.02 + 0.009

             = 5 hundreds + 6 tens + 1 ones + 1 tenths + 2 hundredths + 9 thousandths

             = 500 + 60 + 1 + \(\frac{1}{10}\) + \(\frac{2}{100}\) + \(\frac{9}{1000}\)


Again,

493.2 = 4 hundreds + 9 tens + 3 ones + 2 tenths

         = 400 + 90 + 3 + \(\frac{2}{10}\)


1436.74 = 1 thousands + 4 hundreds + 3 tens + 6 ones + 7 tenths + 4 hundredths

             = 1000 + 400 + 30 + 6 + \(\frac{7}{10}\) + \(\frac{4}{100}\)


Note: When a decimal is missing either in the integral part or decimal part, substitute with 0. 


1. Write the decimal numbers in expanded form:

(i) 3479.105

= 3 thousands + 4 hundreds + 7 tens + 9 ones + 1 tenths + 0 hundredths+ 5 thousandths

= 3000 + 400 + 70 + 9 + \(\frac{1}{10}\) + \(\frac{0}{100}\) + \(\frac{5}{1000}\)


(ii) 7833.45

= 7 thousands + 8 hundreds + 3 tens + 3 ones + 4 tenths + 5 hundredths

= 7000 + 800 + 30 + 3 + \(\frac{4}{10}\) + \(\frac{5}{100}\)


(iii) 21.1097

= 2 tens + 1 ones + 1 tenths + 0 hundredths + 9 thousandths + 7 ten thousandths

= 20 + 1 + \(\frac{1}{10}\) + \(\frac{0}{100}\) + \(\frac{9}{1000}\) + \(\frac{7}{10000}\)


(iv) 524.1

= 5 hundreds + 2 tens + 4 ones + 1 tenths

= 500 + 20 + 4 + \(\frac{1}{10}\)


(v) 143.011

= 1 hundreds + 4 tens + 3 ones + 0 tenths + 1 hundredths + 1 thousandths

= 100 + 40 + 3 + \(\frac{0}{10}\) + \(\frac{1}{100}\) + \(\frac{1}{1000}\)


(vi) 840.006

= 8 hundreds + 4 tens + 0 ones + 0 tenths + 0 hundredths + 6 thousandths

= 800 + 40 + 0 + \(\frac{0}{10}\) + \(\frac{0}{100}\) + \(\frac{6}{1000}\)


(vii) 64.21

= 6 tens + 4 ones + 2 tenths + 1 hundredths

= 60 + 4 + \(\frac{2}{10}\) + \(\frac{1}{100}\)


(viii) 4334.334

= 4 thousands + 3 hundreds + 3 tens + 4 ones + 3 tenths + 3 hundredths + 4 thousandths

= 4000 + 300 + 30 + 4 + \(\frac{3}{10}\) + \(\frac{3}{100}\) + \(\frac{4}{1000}\)


2. Write as decimal fractions:

(i) 8 thousands + 8 ones + 3 tenths + 9 hundredths

= 8008.39


(ii) 4000 + 7 + \(\frac{5}{10}\) + \(\frac{6}{100}\)

= 4007.56


(iii) 6 hundreds + 9 tens + 8 tenths + 4 thousandths

= 690.804


(iv) 3 tens + 7 ones + 6 hundredths + 8 thousandths

= 37.068


(v) 400 + 50 + 1 + \(\frac{9}{100}\)

= 451.09


(vi) 800 + 70 + 2 + \(\frac{8}{10}\) + \(\frac{5}{1000}\)

= 872.805

(vii) 6 tens + 5 tenths + 8 hundredths

= 60.58


(viii) 9 hundreds + 4 tens + 3 tenths + 4 hundredths

= 940.34


3. Write the following in short form.

(i) 100 + 0.5 + 0.06 + 0.008             (ii) 80 + 1 + 0.02 + 0.005


Solution:

(i) 100 + 0.5 + 0.06 + 0.008           

= 100.568            


(ii) 80 + 1 + 0.02 + 0.005

= 81.025


4. Write the place-value of the underlined digits.

(i) 2.47                                (ii) 11.003                           (iii) 5.175


Solution:

(i) 2.47 

Place-value of 7 in 2.47 is 7 hundredths or 0.07.


(ii) 11.003

Place-value of 3 in 11.003 is 3 thousandths or 0.003.


(iii) 5.175

Place-value of 1 in 5.175 is 1 tenths or 0.1.


Expanded form of Decimals:

This is a form in which we add the place value of each digit forming the number.


Practice Problems on Expanded Form of Decimal Fractions:

I. Write each of the following decimals in expanded form:

(i) 38.54

(ii) 83.107

(iii) 627.074

Solution:

(i) 38.54 = 38 + \(\frac{5}{10}\) + \(\frac{4}{100}\) = 30 + 8 + 0.5 + 0.04


(ii) 83.107 = 83 + \(\frac{1}{10}\) + \(\frac{0}{100}\) + \(\frac{7}{1000}\)

                = 80 + 3 + 0.1 + 0 + 0.007

                = 80 + 3 + 0.1 + 0.007


(ii) 627.074 = 627 + \(\frac{0}{10}\) + \(\frac{7}{100}\) + \(\frac{4}{1000}\)

                  = 600 + 20 + 7 + 0 + 0.07 + 0.004

                  = 600 + 20 + 7 + 0.07 + 0.004


II. Write following in short form:

(i) 9 + \(\frac{3}{10}\) + \(\frac{4}{100}\)

(ii) 50 + 7 + \(\frac{6}{10}\) + \(\frac{2}{100}\) + \(\frac{4}{1000}\)

(iii) 100 + 4 + \(\frac{3}{10}\) + \(\frac{6}{1000}\)


Solution:

(i) 9 + \(\frac{3}{10}\) + \(\frac{4}{100}\) = 9.34

(β…±) 50 + 7 + \(\frac{6}{10}\) + \(\frac{2}{100}\) + \(\frac{4}{1000}\) = 57.624

(iii) 100 + 4 + \(\frac{3}{10}\) + \(\frac{6}{1000}\) = 104.306


III. Write the given decimals in expanded form by fractional expansion.

One example has been done for you to get the idea how to do decimals in expanded form by fractional expansion.

1.73 = 1 + \(\frac{7}{10}\) + \(\frac{3}{100}\)

(i) 23.8

(ii) 60.27

(iii) 119.05

(iv) 276.207


Answers:

(i) 20 + 3 + \(\frac{8}{10}\)

(ii) 60 + 0 + \(\frac{2}{10}\) + \(\frac{7}{100}\)

(iii) 100 + 10 + 9 + 0 + \(\frac{5}{100}\)

(iv) 200 + 70 + 6 + \(\frac{2}{10}\) + 0 + \(\frac{7}{100}\)


IV. Write the given decimals in expanded form by decimal expansion.

One example has been done for you to get the idea how to do decimals in expanded form by decimal expansion.

8.461 = 8 + 0.4 + 0.06 + 0.001

(i) 6.08

(ii) 36.505

(iii) 402.613

(iv) 700.037


Answers:

(i) 6 + 0.0 + 0.08

(ii) 30 + 6 + 0.5 + 0.00 + 0.005

(iii) 400 + 0 + 2 + 0.6 + 0.01 + 0.003

(iv) 700 + 0 + 0 + 0.0 + 0.03 + 0.007


V. Write the decimal number for the expansions given below.

(i) 10 + 6 + \(\frac{3}{10}\) + \(\frac{9}{1000}\)

(ii) 600 + 20 + 7 + \(\frac{1}{10}\) + \(\frac{3}{100}\) + \(\frac{7}{1000}\)

(iii) 2000 + 8 + \(\frac{3}{10}\) + \(\frac{9}{100}\)

(iv) 400 + 70 + 1 + 0.5 + 0.07 + 0.002

(v) 5000 + 80 + 0 + 0.2 + 0.002


Answers:

(i) 16.309

(ii) 627.137

(iii) 2008.39

(iv) 471.572

(v) 5080.202


VI. Write the following decimals in expanded form:

(i) 31.5

(ii) 37.53

(iii) 307.85

(iv) 752.34

(Ξ½) 882.146

(vi) 41.005

(vii) 345.083

(viii) 435.202


Answer:

VI. (i) 31.5 = 31 + 05

(ii) 37.53 = 30 + 7 + 0.5 + 0.03

(iii) 307.85 = 300 + 7 + 0.8 + 0.05

(iv) 752.34 = 700 + 50 + 2 + 0.3 + 0.04

(Ξ½) 882.146 = 800 + 80 + 2 + 0.1 + 0.04 + 0.006

(vi) 41.005 = 40 + 1 + 0.005

(vii) 345.083 = 300 + 40 + 5 + 0.08 + 0.003

(viii) 435.202 = 400 + 30 + 5 + 0.2 + 0.002


2. Write each of the following in decimal form:

(i) 9 + 4/10 + 6/100 + 2/1000

(ii) 600 + 40 + 5/1000

(iii) 300 + 3 + 5/10 + 2/1000

(iv) 700 + 40 + 7 + 2/100 + 3/1000


Answer:

2. (i) 9.462

(ii) 640.005

(iii) 303. 502

(iv) 747.023 


3. Fill in the boxes with correct numbers:

(i) 84.29 = 80 + πŸ”² + \(\frac{2}{10}\)+ \(\frac{9}{πŸ”²}\)

(ii) 35.265= 30 + 5 + \(\frac{πŸ”²}{10}\) + \(\frac{6}{100}\) + \(\frac{5}{πŸ”²}\)

(iii) 5672.053= 5000 + 600 + πŸ”² + πŸ”² + \(\frac{5}{πŸ”²}\) + \(\frac{3}{πŸ”²}\)


Answer:

3. (i) 84.29 = 80 + 4 + \(\frac{2}{10}\) + \(\frac{9}{\mathbf{{\color{Red}100}}}\)

(ii) 35.265= 30 + 5 + \(\frac{\mathbf{{\color{Red}2}}}{10}\) + \(\frac{6}{100}\) + \(\frac{5}{\mathbf{{\color{Red}1000}}}\)

(iii) 5672.053= 5000 + 600 + 70 + 2 + \(\frac{5}{\mathbf{{\color{Red}100}}}\) +  \(\frac{3}{\mathbf{{\color{Red}1000}}}\)

You might like these

● Decimal.

Decimal Place Value Chart.

Expanded form of Decimal Fractions.

Like Decimal Fractions.

Unlike Decimal Fraction.

Equivalent Decimal Fractions.

Changing Unlike to Like Decimal Fractions.

Ordering Decimals

Comparison of Decimal Fractions.

Conversion of a Decimal Fraction into a Fractional Number.

Conversion of Fractions to Decimals Numbers.

Addition of Decimal Fractions.

Problems on Addition of Decimal Fractions

Subtraction of Decimal Fractions.

Problems on Subtraction of Decimal Fractions

Multiplication of a Decimal Numbers.

Multiplication of a Decimal by a Decimal.

Properties of Multiplication of Decimal Numbers.

Problems on Multiplication of Decimal Fractions

Division of a Decimal by a Whole Number.

Division of Decimal Fractions

Division of Decimal Fractions by Multiples.

Division of a Decimal by a Decimal.

Division of a whole number by a Decimal.

Properties of Division of Decimal Numbers

Problems on Division of Decimal Fractions

Conversion of fraction to Decimal Fraction.

Simplification in Decimals.

Word Problems on Decimal.






5th Grade Numbers

5th Grade Math Problems

From Expanded form of Decimal Fractions to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 5th Grade Highest Common Factor | HCF | GCD|Prime Factorization Method

    Mar 24, 25 03:40 PM

    Find the H.C.F. of 12, 36, 48
    The highest common factor (H.C.F.) of two or more numbers is the highest or greatest common number or divisor which divides each given number exactly. Hence, it is also called Greatest Common Divisor…

    Read More

  2. 5th Grade Factors and Multiples | Definitions | Solved Examples | Math

    Mar 23, 25 02:39 PM

    Prime Factor of 312
    Here we will discuss how factors and multiples are related to each other in math. A factor of a number is a divisor which divides the dividend exactly. A factor of a number which is a prime number is…

    Read More

  3. Adding 2-Digit Numbers | Add Two Two-Digit Numbers without Carrying

    Mar 23, 25 12:43 PM

    Adding 2-Digit Numbers Using an Abacus
    Here we will learn adding 2-digit numbers without regrouping and start working with easy numbers to get acquainted with the addition of two numbers.

    Read More

  4. Worksheet on 12 Times Table | Printable Multiplication Table | Video

    Mar 23, 25 10:28 AM

    worksheet on multiplication of 12 times table
    Worksheet on 12 times table can be printed out. Homeschoolers can also use these multiplication table sheets to practice at home.

    Read More

  5. Vertical Subtraction | Examples | Word Problems| Video |Column Method

    Mar 22, 25 05:20 PM

    Vertical Subtraction
    Vertical subtraction of 1-digit number are done by arranging the numbers column wise i.e., one number under the other number. How to subtract 1-digit number vertically?

    Read More