Expanded form of Decimal Fractions

We will discuss here about the expanded form of decimal fractions.

In expanded form of decimal fractions we will learn how to read and write the decimal numbers.

Decimal numbers can be expressed in expanded form using the place-value chart. Let us consider the number 561.129. Let us expand each of the digits using the place-value chart.

Expanded form of Decimal

So, we can write 561.129 in the expanded form as follows.

561.129 = 500 + 60 + 1 + 0.1 + 0.02 + 0.009

             = 5 hundreds + 6 tens + 1 ones + 1 tenths + 2 hundredths + 9 thousandths

             = 500 + 60 + 1 + \(\frac{1}{10}\) + \(\frac{2}{100}\) + \(\frac{9}{1000}\)


Again,

493.2 = 4 hundreds + 9 tens + 3 ones + 2 tenths

         = 400 + 90 + 3 + \(\frac{2}{10}\)


1436.74 = 1 thousands + 4 hundreds + 3 tens + 6 ones + 7 tenths + 4 hundredths

             = 1000 + 400 + 30 + 6 + \(\frac{7}{10}\) + \(\frac{4}{100}\)


Note: When a decimal is missing either in the integral part or decimal part, substitute with 0. 


1. Write the decimal numbers in expanded form:

(i) 3479.105

= 3 thousands + 4 hundreds + 7 tens + 9 ones + 1 tenths + 0 hundredths+ 5 thousandths

= 3000 + 400 + 70 + 9 + \(\frac{1}{10}\) + \(\frac{0}{100}\) + \(\frac{5}{1000}\)


(ii) 7833.45

= 7 thousands + 8 hundreds + 3 tens + 3 ones + 4 tenths + 5 hundredths

= 7000 + 800 + 30 + 3 + \(\frac{4}{10}\) + \(\frac{5}{100}\)


(iii) 21.1097

= 2 tens + 1 ones + 1 tenths + 0 hundredths + 9 thousandths + 7 ten thousandths

= 20 + 1 + \(\frac{1}{10}\) + \(\frac{0}{100}\) + \(\frac{9}{1000}\) + \(\frac{7}{10000}\)


(iv) 524.1

= 5 hundreds + 2 tens + 4 ones + 1 tenths

= 500 + 20 + 4 + \(\frac{1}{10}\)


(v) 143.011

= 1 hundreds + 4 tens + 3 ones + 0 tenths + 1 hundredths + 1 thousandths

= 100 + 40 + 3 + \(\frac{0}{10}\) + \(\frac{1}{100}\) + \(\frac{1}{1000}\)


(vi) 840.006

= 8 hundreds + 4 tens + 0 ones + 0 tenths + 0 hundredths + 6 thousandths

= 800 + 40 + 0 + \(\frac{0}{10}\) + \(\frac{0}{100}\) + \(\frac{6}{1000}\)


(vii) 64.21

= 6 tens + 4 ones + 2 tenths + 1 hundredths

= 60 + 4 + \(\frac{2}{10}\) + \(\frac{1}{100}\)


(viii) 4334.334

= 4 thousands + 3 hundreds + 3 tens + 4 ones + 3 tenths + 3 hundredths + 4 thousandths

= 4000 + 300 + 30 + 4 + \(\frac{3}{10}\) + \(\frac{3}{100}\) + \(\frac{4}{1000}\)


2. Write as decimal fractions:

(i) 8 thousands + 8 ones + 3 tenths + 9 hundredths

= 8008.39


(ii) 4000 + 7 + \(\frac{5}{10}\) + \(\frac{6}{100}\)

= 4007.56


(iii) 6 hundreds + 9 tens + 8 tenths + 4 thousandths

= 690.804


(iv) 3 tens + 7 ones + 6 hundredths + 8 thousandths

= 37.068


(v) 400 + 50 + 1 + \(\frac{9}{100}\)

= 451.09


(vi) 800 + 70 + 2 + \(\frac{8}{10}\) + \(\frac{5}{1000}\)

= 872.805

(vii) 6 tens + 5 tenths + 8 hundredths

= 60.58


(viii) 9 hundreds + 4 tens + 3 tenths + 4 hundredths

= 940.34


3. Write the following in short form.

(i) 100 + 0.5 + 0.06 + 0.008             (ii) 80 + 1 + 0.02 + 0.005


Solution:

(i) 100 + 0.5 + 0.06 + 0.008           

= 100.568            


(ii) 80 + 1 + 0.02 + 0.005

= 81.025


4. Write the place-value of the underlined digits.

(i) 2.47                                (ii) 11.003                           (iii) 5.175


Solution:

(i) 2.47 

Place-value of 7 in 2.47 is 7 hundredths or 0.07.


(ii) 11.003

Place-value of 3 in 11.003 is 3 thousandths or 0.003.


(iii) 5.175

Place-value of 1 in 5.175 is 1 tenths or 0.1.


Expanded form of Decimals:

This is a form in which we add the place value of each digit forming the number.


Practice Problems on Expanded Form of Decimal Fractions:

I. Write each of the following decimals in expanded form:

(i) 38.54

(ii) 83.107

(iii) 627.074

Solution:

(i) 38.54 = 38 + \(\frac{5}{10}\) + \(\frac{4}{100}\) = 30 + 8 + 0.5 + 0.04


(ii) 83.107 = 83 + \(\frac{1}{10}\) + \(\frac{0}{100}\) + \(\frac{7}{1000}\)

                = 80 + 3 + 0.1 + 0 + 0.007

                = 80 + 3 + 0.1 + 0.007


(ii) 627.074 = 627 + \(\frac{0}{10}\) + \(\frac{7}{100}\) + \(\frac{4}{1000}\)

                  = 600 + 20 + 7 + 0 + 0.07 + 0.004

                  = 600 + 20 + 7 + 0.07 + 0.004


II. Write following in short form:

(i) 9 + \(\frac{3}{10}\) + \(\frac{4}{100}\)

(ii) 50 + 7 + \(\frac{6}{10}\) + \(\frac{2}{100}\) + \(\frac{4}{1000}\)

(iii) 100 + 4 + \(\frac{3}{10}\) + \(\frac{6}{1000}\)


Solution:

(i) 9 + \(\frac{3}{10}\) + \(\frac{4}{100}\) = 9.34

(β…±) 50 + 7 + \(\frac{6}{10}\) + \(\frac{2}{100}\) + \(\frac{4}{1000}\) = 57.624

(iii) 100 + 4 + \(\frac{3}{10}\) + \(\frac{6}{1000}\) = 104.306


III. Write the given decimals in expanded form by fractional expansion.

One example has been done for you to get the idea how to do decimals in expanded form by fractional expansion.

1.73 = 1 + \(\frac{7}{10}\) + \(\frac{3}{100}\)

(i) 23.8

(ii) 60.27

(iii) 119.05

(iv) 276.207


Answers:

(i) 20 + 3 + \(\frac{8}{10}\)

(ii) 60 + 0 + \(\frac{2}{10}\) + \(\frac{7}{100}\)

(iii) 100 + 10 + 9 + 0 + \(\frac{5}{100}\)

(iv) 200 + 70 + 6 + \(\frac{2}{10}\) + 0 + \(\frac{7}{100}\)


IV. Write the given decimals in expanded form by decimal expansion.

One example has been done for you to get the idea how to do decimals in expanded form by decimal expansion.

8.461 = 8 + 0.4 + 0.06 + 0.001

(i) 6.08

(ii) 36.505

(iii) 402.613

(iv) 700.037


Answers:

(i) 6 + 0.0 + 0.08

(ii) 30 + 6 + 0.5 + 0.00 + 0.005

(iii) 400 + 0 + 2 + 0.6 + 0.01 + 0.003

(iv) 700 + 0 + 0 + 0.0 + 0.03 + 0.007


V. Write the decimal number for the expansions given below.

(i) 10 + 6 + \(\frac{3}{10}\) + \(\frac{9}{1000}\)

(ii) 600 + 20 + 7 + \(\frac{1}{10}\) + \(\frac{3}{100}\) + \(\frac{7}{1000}\)

(iii) 2000 + 8 + \(\frac{3}{10}\) + \(\frac{9}{100}\)

(iv) 400 + 70 + 1 + 0.5 + 0.07 + 0.002

(v) 5000 + 80 + 0 + 0.2 + 0.002


Answers:

(i) 16.309

(ii) 627.137

(iii) 2008.39

(iv) 471.572

(v) 5080.202


VI. Write the following decimals in expanded form:

(i) 31.5

(ii) 37.53

(iii) 307.85

(iv) 752.34

(Ξ½) 882.146

(vi) 41.005

(vii) 345.083

(viii) 435.202


Answer:

VI. (i) 31.5 = 31 + 05

(ii) 37.53 = 30 + 7 + 0.5 + 0.03

(iii) 307.85 = 300 + 7 + 0.8 + 0.05

(iv) 752.34 = 700 + 50 + 2 + 0.3 + 0.04

(Ξ½) 882.146 = 800 + 80 + 2 + 0.1 + 0.04 + 0.006

(vi) 41.005 = 40 + 1 + 0.005

(vii) 345.083 = 300 + 40 + 5 + 0.08 + 0.003

(viii) 435.202 = 400 + 30 + 5 + 0.2 + 0.002


2. Write each of the following in decimal form:

(i) 9 + 4/10 + 6/100 + 2/1000

(ii) 600 + 40 + 5/1000

(iii) 300 + 3 + 5/10 + 2/1000

(iv) 700 + 40 + 7 + 2/100 + 3/1000


Answer:

2. (i) 9.462

(ii) 640.005

(iii) 303. 502

(iv) 747.023 


3. Fill in the boxes with correct numbers:

(i) 84.29 = 80 + πŸ”² + \(\frac{2}{10}\)+ \(\frac{9}{πŸ”²}\)

(ii) 35.265= 30 + 5 + \(\frac{πŸ”²}{10}\) + \(\frac{6}{100}\) + \(\frac{5}{πŸ”²}\)

(iii) 5672.053= 5000 + 600 + πŸ”² + πŸ”² + \(\frac{5}{πŸ”²}\) + \(\frac{3}{πŸ”²}\)


Answer:

3. (i) 84.29 = 80 + 4 + \(\frac{2}{10}\) + \(\frac{9}{\mathbf{{\color{Red}100}}}\)

(ii) 35.265= 30 + 5 + \(\frac{\mathbf{{\color{Red}2}}}{10}\) + \(\frac{6}{100}\) + \(\frac{5}{\mathbf{{\color{Red}1000}}}\)

(iii) 5672.053= 5000 + 600 + 70 + 2 + \(\frac{5}{\mathbf{{\color{Red}100}}}\) +  \(\frac{3}{\mathbf{{\color{Red}1000}}}\)

You might like these

● Decimal.

Decimal Place Value Chart.

Expanded form of Decimal Fractions.

Like Decimal Fractions.

Unlike Decimal Fraction.

Equivalent Decimal Fractions.

Changing Unlike to Like Decimal Fractions.

Ordering Decimals

Comparison of Decimal Fractions.

Conversion of a Decimal Fraction into a Fractional Number.

Conversion of Fractions to Decimals Numbers.

Addition of Decimal Fractions.

Problems on Addition of Decimal Fractions

Subtraction of Decimal Fractions.

Problems on Subtraction of Decimal Fractions

Multiplication of a Decimal Numbers.

Multiplication of a Decimal by a Decimal.

Properties of Multiplication of Decimal Numbers.

Problems on Multiplication of Decimal Fractions

Division of a Decimal by a Whole Number.

Division of Decimal Fractions

Division of Decimal Fractions by Multiples.

Division of a Decimal by a Decimal.

Division of a whole number by a Decimal.

Properties of Division of Decimal Numbers

Problems on Division of Decimal Fractions

Conversion of fraction to Decimal Fraction.

Simplification in Decimals.

Word Problems on Decimal.






5th Grade Numbers

5th Grade Math Problems

From Expanded form of Decimal Fractions to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Patterns in Numbers | Patterns in Maths |Math Patterns|Series Patterns

    Dec 13, 24 08:43 AM

    Complete the Series Patterns
    We see so many patterns around us in our daily life. We know that a pattern is an arrangement of objects, colors, or numbers placed in a certain order. Some patterns neither grow nor reduce but only r…

    Read More

  2. Patterns in Math | Missing Number | Counting Numbers | Worksheets

    Dec 13, 24 12:31 AM

    Finding patterns in math is very important to understand the sequence in the series. We need to find the exact missing number that from the group of numbers. The counting numbers may be counting

    Read More

  3. Concept of Pattern | Similar Patterns in Mathematics | Similar Pattern

    Dec 12, 24 11:22 PM

    Patterns in Necklace
    Concept of pattern will help us to learn the basic number patterns and table patterns. Animals such as all cows, all lions, all dogs and all other animals have dissimilar features. All mangoes have si…

    Read More

  4. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 12, 24 10:31 PM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  5. Types of Lines |Straight Lines|Curved Lines|Horizontal Lines| Vertical

    Dec 09, 24 10:39 PM

    Types of Lines
    What are the different types of lines? There are two different kinds of lines. (i) Straight line and (ii) Curved line. There are three different types of straight lines. (i) Horizontal lines, (ii) Ver…

    Read More