Straight Line in Intercept Form

We will learn how to find the equation of a straight line in intercept form.

The equation of a line which cuts off intercepts a and b respectively from the x and y axes is \(\frac{x}{a}\) + \(\frac{y}{b}\) = 1.

Let the straight line AB intersects the x-axis at A and the y-axis at B where OA = a and OB = b.

Now we have to find the equation of the straight line AB.

Let P(x, y) be any point on the line AB. Draw PQ perpendicular on OX and PR perpendicular on OX. Then, join the points O and P. Now, PQ = y, OQ = x.

Clearly, we see that

Area of the ∆OAB = Area of the ∆OPA + Area of the ∆OPB

⇒ ½ OA ∙ OB = ½ ∙ OA ∙ PQ + ½ ∙ OB ∙ PR

⇒ ½ a ∙ b = ½ ∙ a ∙ y + ½ ∙ b ∙ x

⇒ ab = ay + bx

⇒ \(\frac{ab}{ab}\) = \(\frac{ay + bx}{ab}\), dividing both sides by ab

⇒ 1 = \(\frac{ay}{ab}\) + \(\frac{bx}{ab}\)

⇒ 1 = \(\frac{y}{b}\) + \(\frac{x}{a}\)

\(\frac{x}{a}\) + \(\frac{y}{b}\) = 1, which is the equation of the line in the intercept form.

The equation \(\frac{x}{a}\) + \(\frac{y}{b}\) = 1 is the satisfied by the co-ordinates of any point P lying on the line AB.

Therefore, \(\frac{x}{a}\) + \(\frac{y}{b}\) = 1 represent the equation of the straight line AB.


Solved examples to find the equation of a straight line in intercept form:

1. Find the equation of the line which cuts off an intercept 3 on the positive direction of x-axis and an intercept 5 on the negative direction of y-axis.

Solution: 

The equation of a line which cuts off intercepts a and b respectively from the x and y axes is \(\frac{x}{a}\) + \(\frac{y}{b}\) = 1.

Here, a = 3 and b = -5

Therefore, the equation of the straight line is \(\frac{x}{a}\) + \(\frac{y}{b}\) = 1 ⇒ \(\frac{x}{3}\) + \(\frac{y}{-5}\) = 1 ⇒ \(\frac{x}{3}\) - \(\frac{y}{5}\) = 1 ⇒ 5x – 3y = 15 ⇒ 5x – 3y – 15 = 0.

 

2. Find the intercepts of the straight line 4x + 3y = 24 on the co-ordinate axes.

Solution:

Given equation 4x + 3y = 24.

Now convert the given equation into intercept form.

4x + 3y = 24

⇒ \(\frac{4x + 3y}{24}\) = \(\frac{24}{24}\), Dividing both sides by 24

\(\frac{4x}{24}\) + \(\frac{3y}{24}\) = 1

\(\frac{x}{6}\) + \(\frac{y}{8}\) = 1, which is the intercept form.

Therefore, x-intercept = 6 and y-intercept = 8.

Note: (i) The straight line \(\frac{x}{a}\) + \(\frac{y}{b}\) = 1 intersects the x-axis at A(a, 0) and the y-axis at B(0, b).

(ii) In \(\frac{x}{a}\) + \(\frac{y}{b}\) = 1, a is x-intercept and b is y- intercept.

These intercept a and b may be positive as well as negative.

(iii) If the straight line AB passing through the origin then, a = 0 and b = 0. If we put a = 0 and b = 0 in the intercept form, then \(\frac{x}{0}\) + \(\frac{y}{0}\) = 1, which is undefined. For this reason the equation of a straight line passing through the origin cannot be expressed in the intercept form.

(iv) A line parallel to the x-axis does not intercept the x-axis at any finite distance and hence, we cannot get any finite x- intercept (i.e., a) of such a line. For this reason, a line parallel to x-axis cannot be expressed in the intercept from. In like manner, we cannot get any finite y- intercept (i.e., b) of a line parallel to y-axis and hence, such a line cannot be expressed in the intercept form.

 The Straight Line







11 and 12 Grade Math

From Straight Line in Intercept Form to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Subtraction of Decimals | Subtracting Decimals | Decimal Subtraction

    Apr 17, 25 01:54 PM

    We will discuss here about the subtraction of decimals. Decimals are subtracted in the same way as we subtract ordinary numbers. We arrange the digits in columns

    Read More

  2. Addition of Decimals | How to Add Decimals? | Adding Decimals|Addition

    Apr 17, 25 01:17 PM

    We will discuss here about the addition of decimals. Decimals are added in the same way as we add ordinary numbers. We arrange the digits in columns and then add as required. Let us consider some

    Read More

  3. Expanded form of Decimal Fractions |How to Write a Decimal in Expanded

    Apr 17, 25 12:21 PM

    Expanded form of Decimal
    Decimal numbers can be expressed in expanded form using the place-value chart. In expanded form of decimal fractions we will learn how to read and write the decimal numbers. Note: When a decimal is mi…

    Read More

  4. Math Place Value | Place Value | Place Value Chart | Ones and Tens

    Apr 16, 25 03:10 PM

    0, 1, 2, 3, 4, 5, 6, 7, 8 and 9 are one-digit numbers. Numbers from 10 to 99 are two-digit numbers. Let us look at the digit 6 in the number 64. It is in the tens place of the number. 6 tens = 60 So…

    Read More

  5. Place Value and Face Value | Place and Face Value of Larger Number

    Apr 16, 25 02:55 PM

    Place Value of 3-Digit Numbers
    The place value of a digit in a number is the value it holds to be at the place in the number. We know about the place value and face value of a digit and we will learn about it in details. We know th…

    Read More