Straight Line in Intercept Form

We will learn how to find the equation of a straight line in intercept form.

The equation of a line which cuts off intercepts a and b respectively from the x and y axes is \(\frac{x}{a}\) + \(\frac{y}{b}\) = 1.

Let the straight line AB intersects the x-axis at A and the y-axis at B where OA = a and OB = b.

Now we have to find the equation of the straight line AB.

Let P(x, y) be any point on the line AB. Draw PQ perpendicular on OX and PR perpendicular on OX. Then, join the points O and P. Now, PQ = y, OQ = x.

Clearly, we see that

Area of the ∆OAB = Area of the ∆OPA + Area of the ∆OPB

⇒ ½ OA ∙ OB = ½ ∙ OA ∙ PQ + ½ ∙ OB ∙ PR

⇒ ½ a ∙ b = ½ ∙ a ∙ y + ½ ∙ b ∙ x

⇒ ab = ay + bx

⇒ \(\frac{ab}{ab}\) = \(\frac{ay + bx}{ab}\), dividing both sides by ab

⇒ 1 = \(\frac{ay}{ab}\) + \(\frac{bx}{ab}\)

⇒ 1 = \(\frac{y}{b}\) + \(\frac{x}{a}\)

\(\frac{x}{a}\) + \(\frac{y}{b}\) = 1, which is the equation of the line in the intercept form.

The equation \(\frac{x}{a}\) + \(\frac{y}{b}\) = 1 is the satisfied by the co-ordinates of any point P lying on the line AB.

Therefore, \(\frac{x}{a}\) + \(\frac{y}{b}\) = 1 represent the equation of the straight line AB.


Solved examples to find the equation of a straight line in intercept form:

1. Find the equation of the line which cuts off an intercept 3 on the positive direction of x-axis and an intercept 5 on the negative direction of y-axis.

Solution: 

The equation of a line which cuts off intercepts a and b respectively from the x and y axes is \(\frac{x}{a}\) + \(\frac{y}{b}\) = 1.

Here, a = 3 and b = -5

Therefore, the equation of the straight line is \(\frac{x}{a}\) + \(\frac{y}{b}\) = 1 ⇒ \(\frac{x}{3}\) + \(\frac{y}{-5}\) = 1 ⇒ \(\frac{x}{3}\) - \(\frac{y}{5}\) = 1 ⇒ 5x – 3y = 15 ⇒ 5x – 3y – 15 = 0.

 

2. Find the intercepts of the straight line 4x + 3y = 24 on the co-ordinate axes.

Solution:

Given equation 4x + 3y = 24.

Now convert the given equation into intercept form.

4x + 3y = 24

⇒ \(\frac{4x + 3y}{24}\) = \(\frac{24}{24}\), Dividing both sides by 24

\(\frac{4x}{24}\) + \(\frac{3y}{24}\) = 1

\(\frac{x}{6}\) + \(\frac{y}{8}\) = 1, which is the intercept form.

Therefore, x-intercept = 6 and y-intercept = 8.

Note: (i) The straight line \(\frac{x}{a}\) + \(\frac{y}{b}\) = 1 intersects the x-axis at A(a, 0) and the y-axis at B(0, b).

(ii) In \(\frac{x}{a}\) + \(\frac{y}{b}\) = 1, a is x-intercept and b is y- intercept.

These intercept a and b may be positive as well as negative.

(iii) If the straight line AB passing through the origin then, a = 0 and b = 0. If we put a = 0 and b = 0 in the intercept form, then \(\frac{x}{0}\) + \(\frac{y}{0}\) = 1, which is undefined. For this reason the equation of a straight line passing through the origin cannot be expressed in the intercept form.

(iv) A line parallel to the x-axis does not intercept the x-axis at any finite distance and hence, we cannot get any finite x- intercept (i.e., a) of such a line. For this reason, a line parallel to x-axis cannot be expressed in the intercept from. In like manner, we cannot get any finite y- intercept (i.e., b) of a line parallel to y-axis and hence, such a line cannot be expressed in the intercept form.

 The Straight Line







11 and 12 Grade Math

From Straight Line in Intercept Form to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Worksheet on Triangle | Homework on Triangle | Different types|Answers

    Jun 21, 24 02:19 AM

    Find the Number of Triangles
    In the worksheet on triangle we will solve 12 different types of questions. 1. Take three non - collinear points L, M, N. Join LM, MN and NL. What figure do you get? Name: (a)The side opposite to ∠L…

    Read More

  2. Worksheet on Circle |Homework on Circle |Questions on Circle |Problems

    Jun 21, 24 01:59 AM

    Circle
    In worksheet on circle we will solve 10 different types of question in circle. 1. The following figure shows a circle with centre O and some line segments drawn in it. Classify the line segments as ra…

    Read More

  3. Circle Math | Parts of a Circle | Terms Related to the Circle | Symbol

    Jun 21, 24 01:30 AM

    Circle using a Compass
    In circle math the terms related to the circle are discussed here. A circle is such a closed curve whose every point is equidistant from a fixed point called its centre. The symbol of circle is O. We…

    Read More

  4. Circle | Interior and Exterior of a Circle | Radius|Problems on Circle

    Jun 21, 24 01:00 AM

    Semi-circular Region
    A circle is the set of all those point in a plane whose distance from a fixed point remains constant. The fixed point is called the centre of the circle and the constant distance is known

    Read More

  5. Quadrilateral Worksheet |Different Types of Questions in Quadrilateral

    Jun 19, 24 09:49 AM

    In math practice test on quadrilateral worksheet we will practice different types of questions in quadrilateral. Students can practice the questions of quadrilateral worksheet before the examinations

    Read More